3,434 research outputs found

    Towers of Gravitational Theories

    Get PDF
    In this essay we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.Comment: Awarded second prize for 2006 Gravity Research Foundation essay contes

    Effective field theory approach to Casimir interactions on soft matter surfaces

    Full text link
    We utilize an effective field theory approach to calculate Casimir interactions between objects bound to thermally fluctuating fluid surfaces or interfaces. This approach circumvents the complicated constraints imposed by such objects on the functional integration measure by reverting to a point particle representation. To capture the finite size effects, we perturb the Hamiltonian by DH that encapsulates the particles' response to external fields. DH is systematically expanded in a series of terms, each of which scales homogeneously in the two power counting parameters: \lambda \equiv R/r, the ratio of the typical object size (R) to the typical distance between them (r), and delta=kB T/k, where k is the modulus characterizing the surface energy. The coefficients of the terms in DH correspond to generalized polarizabilities and thus the formalism applies to rigid as well as deformable objects. Singularities induced by the point particle description can be dealt with using standard renormalization techniques. We first illustrate and verify our approach by re-deriving known pair forces between circular objects bound to films or membranes. To demonstrate its efficiency and versatility, we then derive a number of new results: The triplet interactions present in these systems, a higher order correction to the film interaction, and general scaling laws for the leading order interaction valid for objects of arbitrary shape and internal flexibility.Comment: 4 pages, 1 figur

    Relative Entropy: Free Energy Associated with Equilibrium Fluctuations and Nonequilibrium Deviations

    Full text link
    Using a one-dimensional macromolecule in aqueous solution as an illustration, we demonstrate that the relative entropy from information theory, kpkln(pk/pk)\sum_k p_k\ln(p_k/p_k^*), has a natural role in the energetics of equilibrium and nonequilibrium conformational fluctuations of the single molecule. It is identified as the free energy difference associated with a fluctuating density in equilibrium, and is associated with the distribution deviate from the equilibrium in nonequilibrium relaxation. This result can be generalized to any other isothermal macromolecular systems using the mathematical theories of large deviations and Markov processes, and at the same time provides the well-known mathematical results with an interesting physical interpretations.Comment: 5 page

    HST/NICMOS Observations of Fast Infrared Flickering in the Microquasar GRS 1915+105

    Full text link
    We report infrared observations of the microquasar GRS 1915+105 using the NICMOS instrument of the Hubble Space Telescope during 9 visits in April-June 2003. During epochs of high X-ray/radio activity near the beginning and end of this period, we find that the 1.871.87 \um infrared flux is generally low (2\sim 2 mJy) and relatively steady. However, during the X-ray/radio ``plateau'' state between these epochs, we find that the infrared flux is significantly higher (46\sim 4-6 mJy), and strongly variable. In particular, we find events with amplitudes 2030\sim 20-30% occurring on timescales of 1020\sim 10-20s (e-folding timescales of 30\sim 30s). These flickering timescales are several times faster than any previously-observed infrared variability in GRS 1915+105 and the IR variations exceed corresponding X-ray variations at the same (8s\sim 8s) timescale. These results suggest an entirely new type of infrared variability from this object. Based on the properties of this flickering, we conclude that it arises in the plateau-state jet outflow itself, at a distance <2.5<2.5 AU from the accretion disk. We discuss the implications of this work and the potential of further flickering observations for understanding jet formation around black holes.Comment: 19 pages, incl. 4 figures; accepted for publication in Ap

    A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order

    Full text link
    The motion of a small compact object in a background spacetime is investigated in the context of a model nonlinear scalar field theory. This model is constructed to have a perturbative structure analogous to the General Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the effective field theory approach to this model and calculate the finite part of the self force on the small compact object through third order in the ratio of the size of the compact object to the curvature scale of the background (e.g., black hole) spacetime. We use well-known renormalization methods and demonstrate the consistency of the formalism in rendering the self force finite at higher orders within a point particle prescription for the small compact object. This nonlinear scalar model should be useful for studying various aspects of higher-order self force effects in EMRIs but within a comparatively simpler context than the full gravitational case. These aspects include developing practical schemes for higher order self force numerical computations, quantifying the effects of transient resonances on EMRI waveforms and accurately modeling the small compact object's motion for precise determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure

    Finite size corrections to the radiation reaction force in classical electrodynamics

    Full text link
    We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius RR of a spherically symmetric charge is order R2R^2 rather than order RR in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincar\'e and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.Comment: 4 pages, 2 figure

    Lepton Flavor Violation and the Tau Neutrino Mass

    Full text link
    We point out that, in the left-right symmetric model of weak interaction, if ντ\nu_\tau mass is in the keV to MeV range, there is a strong correlation between rare decays such as τ3μ,τ3e\tau \rightarrow 3 \mu, \tau \rightarrow 3 e and the ντ\nu_\tau mass. In particular, we point out that a large range of ντ\nu_\tau masses are forbidden by the cosmological constraints on mντm_{\nu_\tau} in combination with the present upper limits on these processes.Comment: UMDHEP 94-30, 14 pages, TeX file, (some new references added

    Canonical formulation of self-gravitating spinning-object systems

    Full text link
    Based on the Arnowitt-Deser-Misner (ADM) canonical formulation of general relativity, a canonical formulation of gravitationally interacting classical spinning-object systems is given to linear order in spin. The constructed position, linear momentum and spin variables fulfill standard Poisson bracket relations. A spatially symmetric time gauge for the tetrad field is introduced. The achieved formulation is of fully reduced form without unresolved constraints, supplementary, gauge, or coordinate conditions. The canonical field momentum is not related to the extrinsic curvature of spacelike hypersurfaces in standard ADM form. A new reduction of the tetrad degrees of freedom to the Einstein form of the metric field is suggested.Comment: 6 pages. v2: extended version; identical to the published one. v3: corrected misprints in (24) and (39); improved notation; added note regarding a further reference
    corecore