8,031 research outputs found
Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing
A combination of hydrodynamic cavitation and heterogeneous advanced Fenton process (AFP) based on the use of zero valent iron as the catalyst has been investigated for the treatment of real industrial wastewater. The effect of various operating parameters such as inlet pressure, temperature, and the presence of copper windings on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that increased pressures, higher operating temperature and the absence of copper windings are more favourable for a rapid TOC mineralization. A new approach of latent remediation has also been investigated where hydrodynamic cavitation is only used as a pre-treatment with an aim of reducing the overall cost of pollutant degradation. It has been observed that approach of latent remediation works quite well with about 50–60% removal of TOC using only minimal initial treatment by hydrodynamic cavitation
Intensification of hydroxyl radical production in sonochemical reactors
The efficacy of sonochemical reactors in chemical processing applications has been well established in the laboratory scale of operation though at a given set of operating parameters and no efforts have been directed in terms of maximizing the free radical production. In the present work, the effect of different operating parameters viz. pH, power dissipation into the system, effect of additives such as air, haloalkanes, titanium dioxide, iron and oxygen on the extent of hydroxyl radical formation in a sonochemical reactor have been investigated using salicylic acid dosimetry. Possible mechanisms for oxidation of salicylic acid in the presence of different additives have also been established. It has been observed that acidic conditions under optimized power dissipation in the presence of iron powder and oxygen result in maximum liberation of hydroxyl radicals as quantified by the kinetic rate constant for production of 2,5- and 2,3-dihydroxybenzoic acid. The study has enabled the optimization of the conditions for maximum efficacy of sonochemical reactors where free radical attack is the controlling mechanism for the chemical processing applications
Superconductivity and Physical Properties of CaPd2Ge2 Single Crystals
We present the superconducting and normal state properties of CaPd2Ge2 single
crystal investigated by magnetic susceptibility \chi, isothermal magnetization
M, heat capacity C_p, in-plane electrical resistivity \rho and London
penetration depth \lambda versus temperature T and magnetic field H
measurements. Bulk superconductivity is inferred from the \rho(T) and C_p(T)
data. The \rho(T) data exhibit metallic behavior and undergoes a
superconducting transition with T_c onset = 1.98 K and zero resistivity state
at T_c 0 = 1.67 K. The \chi(T) reveal the onset of superconductivity at 2.0 K.
For T>2.0 K, the \chi(T) and M(H) are weakly anisotropic paramagnetic with
\chi_ab > \chi_c. The C_p(T) confirm the bulk superconductivity below T_c =
1.69(3) K. The superconducting state electronic heat capacity is analyzed
within the framework of a single-band \alpha-model of BCS superconductivity and
various normal and superconducting state parameters are estimated. Within the
\alpha-model, the C_p(T) data and the ab plane \lambda(T) data consistently
indicate a moderately anisotropic s-wave gap with \Delta(0)/k_B T_c ~ 1.6,
somewhat smaller than the BCS value of 1.764. The relationship of the heat
capacity jump at T_c and the penetration depth measurement to the anisotropy in
the s-wave gap is discussed.Comment: 12 pages, 9 figures, 2 Tables; Submitted to PR
Spherical Shock Waves of Variable Energy in A Radiating Atmosphere
This paper presents power series similarity solutions for spherical shock waves of variable energy propagating in a radiating gas, taking into consideration the Rosseland’s radiative diffusion model. These similarity solutions are obtained for an energy input , where is the energy released up to time t and is a functional constant. The effects of radiation-parameter are explored on the pressure, the density, the particle velocity and the heat flux of radiation just behind the spherical shock front. The results provided a clear picture of whether and how the radiation flux affects the distribution of the flow variables in the region behind the spherical shock waves
Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors
The effect of the presence and absence of the chloroalkanes, dichloromethane (CH2Cl2), chloroform (CHCl3) and carbon tetrachloride (CCl4) on the extent of oxidation of aqueous I- to I3- has been investigated in (a) a liquid whistle reactor (LWR) generating hydrodynamic cavitation and (b) an ultrasonic probe, which produces acoustic cavitation. The aim has been to examine the intensification achieved in the extent of oxidation due to the generation of additional free radicals/oxidants in the reactor as a result of the presence of chloroalkanes. It has been observed that the extent of increase in the oxidation reaction is strongly dependent on the applied pressure in the case of the LWR. Also, higher volumes of the chloroalkanes favour the intensification and the order of effectiveness is CCl4> CHCl3 > CH2Cl2. However, the results with the ultrasonic probe suggest that an optimum concentration of CH2Cl2 or CHCl3 exists beyond which there is little increase in the extent of observed intensification. For CCl4, however, no such optimum concentration was observed and the extent of increase in the rates of oxidation reaction rose with the amount of CCl4 added. Stage wise addition of the chloroalkanes was found to give marginally better results in the case of the ultrasonic probe as compared to bulk addition at the start of the run. Although CCl4 is the most effective, its toxicity and carcinogenicity may mean that CH2Cl2 and CHCl3 offer a safer viable alternative and the present work should be useful in establishing the amount of chloroalkanes required for obtaining a suitable degree of intensification
- …