9,882 research outputs found
Deep Learning for Single Image Super-Resolution: A Brief Review
Single image super-resolution (SISR) is a notoriously challenging ill-posed
problem, which aims to obtain a high-resolution (HR) output from one of its
low-resolution (LR) versions. To solve the SISR problem, recently powerful deep
learning algorithms have been employed and achieved the state-of-the-art
performance. In this survey, we review representative deep learning-based SISR
methods, and group them into two categories according to their major
contributions to two essential aspects of SISR: the exploration of efficient
neural network architectures for SISR, and the development of effective
optimization objectives for deep SISR learning. For each category, a baseline
is firstly established and several critical limitations of the baseline are
summarized. Then representative works on overcoming these limitations are
presented based on their original contents as well as our critical
understandings and analyses, and relevant comparisons are conducted from a
variety of perspectives. Finally we conclude this review with some vital
current challenges and future trends in SISR leveraging deep learning
algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM
The challenge of improving visibility in Beijing
The "Blue Sky Project" was proposed in 1998 to investigate by how much emissions should be reduced to increase blue sky frequency in Beijing, which hosted the Summer Olympics in 2008. This paper focuses on the temporal variation of visibility and its dependence on meteorological conditions and suspended particles at Beijing using the hourly observed visibility data at Beijing Capital International Airport (BCIA) from 1999 to 2007. It has been found that about 47.8% (24.2%) of the hours in Beijing are "bad" ("good") hours with visibility below 10 km (equal or higher than 20 km) between 1999 and 2007. Due to the high Relative Humidity (RH), summer is the season with the lowest mean visibility in a year. Although PM<sub>10</sub> index was reported in a decreasing trend (Chan and Yao, 2008), the increase of RH has resulted in a decreasing trend of visibility over BCIA in the summer from 1999 to 2007. To ensure blue sky ("good" visibility) for Olympics 2008, daily mean PM<sub>10</sub> index should have been reduced from 81 to 44. This requires that not only vehicle emissions, but also other emissions should be limited. Observations verify that blue-sky-hour rate increased significantly after mean PM<sub>10</sub> index was reduced to 53 during Olympics 2008, however, the visibility of 2009 returned to the mean level from 1999 to 2007 during the period 8&minus;24 August. RH (aerosol) contribute 24% (76%) of the improvement of visibility during August 2008
Parallax Contextual Representations For Stereo Matching
In this work, we study the context aggregation in stereo matching from a new parallax perspective. Unlike previous works, we propose to characterize and augment a pixel with its parallax contextual representation (PCR), which has not been explored before. We also propose a new concept called disparity prototype to describe the overall representation of a disparity plane. Our proposed PCR module consists of three steps: 1) divide disparity planes for a rough estimation of disparity; 2) estimate the disparity prototypes for each disparity plane; 3) derive PCR-augmented representations with disparity prototypes. Extensive experiments on various datasets using different networks validate the effectiveness of our proposal
Gate defined quantum dot realized in a single crystalline InSb nanosheet
Single crystalline InSb nanosheet is an emerging planar semiconductor
material with potential applications in electronics, infrared optoelectronics,
spintronics and topological quantum computing. Here we report on realization of
a quantum dot device from a single crystalline InSb nanosheet grown by
molecular-beam epitaxy. The device is fabricated from the nanosheet on a
Si/SiO2 substrate and the quantum dot confinement is achieved by top gate
technique. Transport measurements show a series of Coulomb diamonds,
demonstrating that the quantum dot is well defined and highly tunable. Tunable,
gate-defined, planar InSb quantum dots offer a renewed platform for developing
semiconductor-based quantum computation technology.Comment: 12 pages, 4 figure
Decoherence processes during active manipulation of excitonic qubits in semiconductor quantum dots
Using photoluminescence spectroscopy, we have investigated the nature of Rabi
oscillation damping during active manipulation of excitonic qubits in
self-assembled quantum dots. Rabi oscillations were recorded by varying the
pulse amplitude for fixed pulse durations between 4 ps and 10 ps. Up to 5
periods are visible, making it possible to quantify the excitation dependent
damping. We find that this damping is more pronounced for shorter pulse widths
and show that its origin is the non-resonant excitation of carriers in the
wetting layer, most likely involving bound-to-continuum and continuum-to-bound
transitions.Comment: 18 pages, 4 figure
Anisotropic Pauli spin-blockade effect and spin-orbit interaction field in an InAs nanowire double quantum dot
We report on experimental detection of the spin-orbit interaction field in an
InAs nanowire double quantum dot device. In the spin blockade regime, leakage
current through the double quantum dot is measured and is used to extract the
effects of spin-orbit interaction and hyperfine interaction on spin state
mixing. At finite magnetic fields, the leakage current arising from the
hyperfine interaction is suppressed and the spin-orbit interaction dominates
spin state mixing. We observe dependence of the leakage current on the applied
magnetic field direction and determine the direction of the spin-orbit
interaction field. We show that the spin-orbit field lies in a direction
perpendicular to the nanowire axis but with a pronounced off-substrate-plane
angle. It is for the first time that such an off-substrate-plane spin-orbit
field in an InAs nanowire has been detected. The results are expected to have
an important implication in employing InAs nanowires to construct spin-orbit
qubits and topological quantum devices.Comment: 20 pages, 5 figures, Supporting Informatio
- …