1,520 research outputs found

    Gyrokinetic Microtearing Turbulence

    Get PDF

    Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    Get PDF
    The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 014037]. This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra density scan is studied, which traverses through a Linear (LOC) to Saturated (SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ITG modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulenc

    Nonlinear mode coupling and energetics of driven magnetized shear-flow turbulence

    Full text link
    To comprehensively understand saturation of two-dimensional (22D) magnetized Kelvin-Helmholtz-instability-driven turbulence, energy transfer analysis is extended from the traditional interaction between scales to include eigenmode interactions, by using the nonlinear couplings of linear eigenmodes of the ideal instability. While both kinetic and magnetic energies cascade to small scales, a significant fraction of turbulent energy deposited by unstable modes in the fluctuation spectrum is shown to be re-routed to the conjugate-stable modes at the instability scale. They remove energy from the forward cascade at its inception. The remaining cascading energy flux is shown to attenuate exponentially at a small scale, dictated by the large-scale stable modes. Guided by a widely used instability-saturation assumption, a general quasilinear model of instability is tested by retaining all nonlinear interactions except those that couple to the large-scale stable modes. These complex interactions are analytically removed from the magnetohydrodynamic equations using a novel technique. Observations are: an explosive large-scale vortex separation instead of the well-known merger of 22D, a dramatic enhancement in turbulence level and spectral energy fluxes, and a reduced small-scale dissipation length-scale. These show critical role of the stable modes in instability saturation. Possible reduced-order turbulence models are proposed for fusion and astrophysical plasmas, based on eigenmode-expanded energy transfer analyses.Comment: Selected by the editors of Physics of Plasmas as a Featured article. https://doi.org/10.1063/5.015656

    Enhanced transport at high plasma β\beta and sub-threshold kinetic ballooning modes in Wendelstein 7-X

    Full text link
    The effect of plasma pressure β\beta on ion-temperature-gradient-driven (ITG) turbulence is studied in the Wendelstein 7-X (W7-X) stellarator, showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the quasi-stationary state. By zonal-flow erosion, these highly non-ideal KBMs affect ITG saturation and thereby enable higher heat fluxes. Controlling these KBMs will be essential in order to allow W7-X and future stellarators to achieve maximum performance.Comment: 16 pages, 5 figure

    Evidence for proton acceleration up to TeV energies based on VERITAS and Fermi-LAT observations of the Cas A SNR

    Full text link
    We present a study of γ\gamma-ray emission from the core-collapse supernova remnant Cas~A in the energy range from 0.1GeV to 10TeV. We used 65 hours of VERITAS data to cover 200 GeV - 10 TeV, and 10.8 years of \textit{Fermi}-LAT data to cover 0.1-500 GeV. The spectral analysis of \textit{Fermi}-LAT data shows a significant spectral curvature around 1.3±0.4stat1.3 \pm 0.4_{stat} GeV that is consistent with the expected spectrum from pion decay. Above this energy, the joint spectrum from \textit{Fermi}-LAT and VERITAS deviates significantly from a simple power-law, and is best described by a power-law with spectral index of 2.17±0.02stat2.17\pm 0.02_{stat} with a cut-off energy of 2.3±0.5stat2.3 \pm 0.5_{stat} TeV. These results, along with radio, X-ray and γ\gamma-ray data, are interpreted in the context of leptonic and hadronic models. Assuming a one-zone model, we exclude a purely leptonic scenario and conclude that proton acceleration up to at least 6 TeV is required to explain the observed γ\gamma-ray spectrum. From modeling of the entire multi-wavelength spectrum, a minimum magnetic field inside the remnant of Bmin≈150 μGB_{\mathrm{min}}\approx150\,\mathrm{\mu G} is deduced.Comment: 33 pages, 9 Figures, 6 Table

    Discovery of Very High Energy Gamma Rays from 1ES 1440+122

    Full text link
    The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in the discovery of γ\gamma-ray emission from the blazar, which has a redshift zz=0.163. 1ES 1440+122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8±0.7stat±0.8sys\pm0.7_{\mathrm{stat}}\pm0.8_{\mathrm{sys}}) ×\times 10−12^{-12} cm−2^{-2} s−1^{-1} (1.2\% of the Crab Nebula's flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with a photon index of 3.1 ±\pm 0.4stat_{\mathrm{stat}} ±\pm 0.2sys_{\mathrm{sys}}. Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope (0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multi-wavelength data. Adding an external-Compton or a hadronic component also adequately describes the data.Comment: 8 pages, 4 figures. Accepted for publication in MNRA

    Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts

    Full text link
    Transient X-ray binaries produce major outbursts in which the X-ray flux can increase over the quiescent level by factors as large as 10710^7. The low-mass X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such major outbursts in June and October 2015, respectively. We present here observations at energies above hundreds of GeV with the VERITAS observatory taken during some of the brightest X-ray activity ever observed from these systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux limits derived from these observations on the gamma-ray flux above 200 GeV of F <4.4×10−12< 4.4\times 10^{-12} cm−2^{-2} s−1^{-1} correspond to a tiny fraction (about 10−610^{-6}) of the Eddington luminosity of the system, in stark contrast to that seen in the X-ray band. No gamma rays have been detected during observations of 4U 0115+634 in the period of major X-ray activity in October 2015. The flux upper limit derived from our observations is F <2.1×10−12< 2.1\times 10^{-12} cm−2^{-2} s−1^{-1} for gamma rays above 300 GeV, setting an upper limit on the ratio of gamma-ray to X-ray luminosity of less than 4%.Comment: Accepted for publication in the Astrophysical Journa

    Gamma-ray observations of Tycho's SNR with VERITAS and Fermi

    Full text link
    High-energy gamma-ray emission from supernova remnants (SNRs) has provided a unique perspective for studies of Galactic cosmic-ray acceleration. Tycho's SNR is a particularly good target because it is a young, type Ia SNR that is well-studied over a wide range of energies and located in a relatively clean environment. Since the detection of gamma-ray emission from Tycho's SNR by VERITAS and Fermi-LAT, there have been several theoretical models proposed to explain its broadband emission and high-energy morphology. We report on an update to the gamma-ray measurements of Tycho's SNR with 147 hours of VERITAS and 84 months of Fermi-LAT observations, which represents about a factor of two increase in exposure over previously published data. About half of the VERITAS data benefited from a camera upgrade, which has made it possible to extend the TeV measurements toward lower energies. The TeV spectral index measured by VERITAS is consistent with previous results, but the expanded energy range softens a straight power-law fit. At energies higher than 400 GeV, the power-law index is 2.92±0.42stat±0.20sys2.92 \pm 0.42_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}}. It is also softer than the spectral index in the GeV energy range, 2.14±0.09stat±0.02sys2.14 \pm 0.09_{\mathrm{stat}} \pm 0.02_{\mathrm{sys}}, measured by this study using Fermi--LAT data. The centroid position of the gamma-ray emission is coincident with the center of the remnant, as well as with the centroid measurement of Fermi--LAT above 1 GeV. The results are consistent with an SNR shell origin of the emission, as many models assume. The updated spectrum points to a lower maximum particle energy than has been suggested previously.Comment: Accepted for publication in The Astrophysical Journa
    • …
    corecore