131 research outputs found

    (Mis-)handling gauge invariance in the theory of the quantum Hall effect III: The instanton vacuum and chiral edge physics

    Full text link
    The concepts of an instanton vacuum and F-invariance are used to derive a complete effective theory of massless edge excitations in the quantum Hall effect. We establish, for the first time, the fundamental relation between the instanton vacuum approach and the theory of chiral edge bosons. Two longstanding problems of smooth disorder and Coulomb interactions are addressed. We introduce a two dimensional network of chiral edge states and tunneling centers (saddlepoints) as a model for the plateau transitions. We derive a mean field theory including the Coulomb interactions and explain the recent empirical fits to transport at low temperatures. Secondly, we address the problem of electron tunneling into the quantum Hall edge. We express the problem in terms of an effective Luttinger liquid with conductance parameter (g) equal to the filling fraction (\nu) of the Landau band. Hence, even in the integral regime our results for tunneling are completely non-Fermi liquid like, in sharp contrast to the predictions of single edge theories.Comment: 51 pages, 8 figures; section IIA3 completely revised, section IIB and appendix C corrected; submitted to Phys.Rev.

    On the Phase Boundaries of the Integer Quantum Hall Effect. II

    Full text link
    It is shown that the statements about the observation of the transitions between the insulating phase and the integer quantum Hall effect phases with the quantized Hall conductivity σxyq\sigma_{xy}^{q} 3e2/h\geq 3e^{2}/h made in a number of works are unjustified. In these works, the crossing points of the magnetic field dependences of the diagonal resistivity at different temperatures at ωcτ1\omega_{c}\tau \approx 1 have been misidentified as the critical points of the phase transitions. In fact, these crossing points are due to the sign change of the derivative dρxx/dTd\rho_{xx}/dT owing to the quantum corrections to the conductivity.Comment: 3 pages, 2 figure

    The Quantum Hall Effect: Unified Scaling Theory and Quasi-particles at the Edge

    Full text link
    We address two fundamental issues in the physics of the quantum Hall effect: a unified description of scaling behavior of conductances in the integral and fractional regimes, and a quasi-particle formulation of the chiral Luttinger Liquids that describe the dynamics of edge excitations in the fractional regime.Comment: 11 pages, LateX, 2 figures (not included, available from the authors), to be published in Proceedings of the International Summer School on Strongly Correlated Electron Systems, Lajos Kossuth University, Debrecen, Hungary, Sept 199

    Super universality of the quantum Hall effect and the "large NN picture" of the ϑ\vartheta angle

    Get PDF
    It is shown that the "massless chiral edge excitations" are an integral and universal aspect of the low energy dynamics of the ϑ\vartheta vacuum that has historically gone unnoticed. Within the SU(M+N)/S(U(M)×U(N))SU(M+N)/S(U(M) \times U(N)) non-linear sigma model we introduce an effective theory of "edge excitations" that fundamentally explains the quantum Hall effect. In sharp contrast to the common beliefs in the field our results indicate that this macroscopic quantization phenomenon is, in fact, a {\em super universal} strong coupling feature of the ϑ\vartheta angle with the replica limit M=N=0M=N=0 only playing a role of secondary importance. To demonstrate super universality we revisit the large NN expansion of the CPN1CP^{N-1} model. We obtain, for the first time, explicit scaling results for the quantum Hall effect including quantum criticality of the quantum Hall plateau transition. Consequently a scaling diagram is obtained describing the cross-over between the weak coupling "instanton phase" and the strong coupling "quantum Hall phase" of the large NN theory. Our results are in accordance with the "instanton picture" of the ϑ\vartheta angle but fundamentally invalidate all the ideas, expectations and conjectures that are based on the historical "large NN picture."Comment: 40 pages, 9 figure

    The effect of carrier density gradients on magnetotransport data measured in Hall bar geometry

    Full text link
    We have measured magnetotransport of the two-dimensional electron gas in a Hall bar geometry in the presence of small carrier density gradients. We find that the longitudinal resistances measured at both sides of the Hall bar interchange by reversing the polarity of the magnetic field. We offer a simple explanation for this effect and discuss implications for extracting conductivity flow diagrams of the integer quantum Hall effect.Comment: 7 pages, 8 figure

    Probing the plateau-insulator quantum phase transition in the quantum Hall regime

    Get PDF
    We report quantum Hall experiments on the plateau-insulator transition in a low mobility In_{.53} Ga_{.47} As/InP heterostructure. The data for the longitudinal resistance \rho_{xx} follow an exponential law and we extract a critical exponent \kappa= .55 \pm .05 which is slightly different from the established value \kappa = .42 \pm .04 for the plateau transitions. Upon correction for inhomogeneity effects, which cause the critical conductance \sigma_{xx}^* to depend marginally on temperature, our data indicate that the plateau-plateau and plateau- insulator transitions are in the same universality class.Comment: 4 pages, 4 figures (.eps

    Renormalization of the vacuum angle in quantum mechanics, Berry phase and continuous measurements

    Full text link
    The vacuum angle θ\theta renormalization is studied for a toy model of a quantum particle moving around a ring, threaded by a magnetic flux θ\theta. Different renormalization group (RG) procedures lead to the same generic RG flow diagram, similar to that of the quantum Hall effect. We argue that the renormalized value of the vacuum angle may be observed if the particle's position is measured with finite accuracy or coupled to additional slow variable, which can be viewed as a coordinate of a second (heavy) particle on the ring. In this case the renormalized θ\theta appears as a magnetic flux this heavy particle sees, or the Berry phase, associated with its slow rotation.Comment: 4 pages, 2 figure

    The Effects of Electron-Electron Interactions on the Integer Quantum Hall Transitions

    Full text link
    We study the effects of electron-electron interaction on the critical properties of the plateau transitions in the {\it integer} quantum Hall effect. We find the renormalization group dimension associated with short-range interactions to be 0.66±0.04-0.66\pm0.04. Thus the non-interacting fixed point (characterized z=2z=2 and ν2.3\nu\approx 2.3) is stable. For the Coulomb interaction, we find the correlation effect is a marginal perturbation at a Hartree-Fock fixed point (z=1z=1, ν2.3\nu\approx 2.3) by dimension counting. Further calculations are needed to determine its stability upon loop corrections.Comment: 12 pages, Revtex, minor changes, to be published in Phys. Rev. Let

    Exact renormalization-group analysis of first order phase transitions in clock models

    Full text link
    We analyze the exact behavior of the renormalization group flow in one-dimensional clock-models which undergo first order phase transitions by the presence of complex interactions. The flow, defined by decimation, is shown to be single-valued and continuous throughout its domain of definition, which contains the transition points. This fact is in disagreement with a recently proposed scenario for first order phase transitions claiming the existence of discontinuities of the renormalization group. The results are in partial agreement with the standard scenario. However in the vicinity of some fixed points of the critical surface the renormalized measure does not correspond to a renormalized Hamiltonian for some choices of renormalization blocks. These pathologies although similar to Griffiths-Pearce pathologies have a different physical origin: the complex character of the interactions. We elucidate the dynamical reason for such a pathological behavior: entire regions of coupling constants blow up under the renormalization group transformation. The flows provide non-perturbative patterns for the renormalization group behavior of electric conductivities in the quantum Hall effect.Comment: 13 pages + 3 ps figures not included, TeX, DFTUZ 91.3

    Network Models of Quantum Percolation and Their Field-Theory Representations

    Full text link
    We obtain the field-theory representations of several network models that are relevant to 2D transport in high magnetic fields. Among them, the simplest one, which is relevant to the plateau transition in the quantum Hall effect, is equivalent to a particular representation of an antiferromagnetic SU(2N) (N0N\to 0) spin chain. Since the later can be mapped onto a θ0\theta\ne 0, U(2N)/U(N)×U(N)U(2N)/U(N)\times U(N) sigma model, and since recent numerical analyses of the corresponding network give a delocalization transition with ν2.3\nu\approx 2.3, we conclude that the same exponent is applicable to the sigma model
    corecore