We analyze the exact behavior of the renormalization group flow in
one-dimensional clock-models which undergo first order phase transitions by the
presence of complex interactions. The flow, defined by decimation, is shown to
be single-valued and continuous throughout its domain of definition, which
contains the transition points. This fact is in disagreement with a recently
proposed scenario for first order phase transitions claiming the existence of
discontinuities of the renormalization group. The results are in partial
agreement with the standard scenario. However in the vicinity of some fixed
points of the critical surface the renormalized measure does not correspond to
a renormalized Hamiltonian for some choices of renormalization blocks. These
pathologies although similar to Griffiths-Pearce pathologies have a different
physical origin: the complex character of the interactions. We elucidate the
dynamical reason for such a pathological behavior: entire regions of coupling
constants blow up under the renormalization group transformation. The flows
provide non-perturbative patterns for the renormalization group behavior of
electric conductivities in the quantum Hall effect.Comment: 13 pages + 3 ps figures not included, TeX, DFTUZ 91.3