16 research outputs found

    Electrical switching of magnetic order in an orbital Chern insulator

    Full text link
    Magnetism typically arises from the joint effect of Fermi statistics and repulsive Coulomb interactions, which favors ground states with non-zero electron spin. As a result, controlling spin magnetism with electric fields---a longstanding technological goal in spintronics and multiferroics---can be achieved only indirectly. Here, we experimentally demonstrate direct electric field control of magnetic states in an orbital Chern insulator, a magnetic system in which non-trivial band topology favors long range order of orbital angular momentum but the spins are thought to remain disordered. We use van der Waals heterostructures consisting of a graphene monolayer rotationally faulted with respect to a Bernal-stacked bilayer to realize narrow and topologically nontrivial valley-projected moir\'e minibands. At fillings of one and three electrons per moir\'e unit cell within these bands, we observe quantized anomalous Hall effects with transverse resistance approximately equal to h/2e2h/2e^2, which is indicative of spontaneous polarization of the system into a single-valley-projected band with a Chern number equal to two. At a filling of three electrons per moir\'e unit cell, we find that the sign of the quantum anomalous Hall effect can be reversed via field-effect control of the chemical potential; moreover, this transition is hysteretic, which we use to demonstrate nonvolatile electric field induced reversal of the magnetic state. A theoretical analysis indicates that the effect arises from the topological edge states, which drive a change in sign of the magnetization and thus a reversal in the favored magnetic state. Voltage control of magnetic states can be used to electrically pattern nonvolatile magnetic domain structures hosting chiral edge states, with applications ranging from reconfigurable microwave circuit elements to ultralow power magnetic memory.Comment: 21 pages, 17 figure

    The Future of the Correlated Electron Problem

    Full text link
    The understanding of material systems with strong electron-electron interactions is the central problem in modern condensed matter physics. Despite this, the essential physics of many of these materials is still not understood and we have no overall perspective on their properties. Moreover, we have very little ability to make predictions in this class of systems. In this manuscript we share our personal views of what the major open problems are in correlated electron systems and we discuss some possible routes to make progress in this rich and fascinating field. This manuscript is the result of the vigorous discussions and deliberations that took place at Johns Hopkins University during a three-day workshop January 27, 28, and 29, 2020 that brought together six senior scientists and 46 more junior scientists. Our hope, is that the topics we have presented will provide inspiration for others working in this field and motivation for the idea that significant progress can be made on very hard problems if we focus our collective energies.Comment: 55 pages, 19 figure

    Cascade of phase transitions and Dirac revivals in magic-angle graphene

    Get PDF
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Twisted bilayer graphene near the magic angle1–4 exhibits rich electron-correlation physics, displaying insulating3–6, magnetic7,8 and superconducting phases4–6. The electronic bands of this system were predicted1,2 to narrow markedly9,10 near the magic angle, leading to a variety of possible symmetry-breaking ground states11–17. Here, using measurements of the local electronic compressibility, we show that these correlated phases originate from a high-energy state with an unusual sequence of band population. As carriers are added to the system, the four electronic ‘flavours’, which correspond to the spin and valley degrees of freedom, are not filled equally. Rather, they are populated through a sequence of sharp phase transitions, which appear as strong asymmetric jumps of the electronic compressibility near integer fillings of the moiré lattice. At each transition, a single spin/valley flavour takes all the carriers from its partially filled peers, ‘resetting’ them to the vicinity of the charge neutrality point. As a result, the Dirac-like character observed near charge neutrality reappears after each integer filling. Measurement of the in-plane magnetic field dependence of the chemical potential near filling factor one reveals a large spontaneous magnetization, further substantiating this picture of a cascade of symmetry breaking. The sequence of phase transitions and Dirac revivals is observed at temperatures well above the onset of the superconducting and correlated insulating states. This indicates that the state that we report here, with its strongly broken electronic flavour symmetry and revived Dirac-like electronic character, is important in the physics of magic-angle graphene, forming the parent state out of which the more fragile superconducting and correlated insulating ground states emerge
    corecore