216 research outputs found

    Technical Implications of the Use of Biofuels in Agricultural and Industrial Compression-Ignition Engines with a Special Focus on the Interactions with (Bio)lubricants

    Get PDF
    The environmental sustainability of agricultural and industrial vehicles, as well as of the transportation sector, represents one of the most critical challenges to the sustainable development of a nation. In recent decades, compression-ignition engines have been widely used in on-road and off-road vehicles due to their better fuel economy, autonomy, compactness, and mechanical performance (spec. the high torque values). Due to the consistent environmental impact of fossil fuels, scientists are searching for alternative energy sources while preserving the beneficial features of diesel engines. The utilization of blends of diesel fuel, biodiesel, and bioethanol fuel (referred to as “ternary blends”) is among the most promising solutions for replacing fossil fuels in the near term, allowing, at the same time, us to continue using existing vehicles until new technologies are developed, consolidated and adapted to the agricultural and industrial sector. These ternary blends can lower exhaust emissions without creating major problems for existing fuel-feeding systems, typically designed for low-viscosity fossil fuels. One of the concerns in using liquid biofuels, specifically biodiesel, is the high chemical affinity with conventional and bio-based lubricants, so the main parameters of lubricants can vary significantly after a long operation of the engine. The comprehensive literature review presented in this article delves into the technical challenges, the main research pathways, and the potential solutions associated with the utilization of biofuels. Additionally, it investigates the emerging application of nanoparticles as additives in lubricants and biofuels, highlighting their valuable potential. This study also discusses the potential implementation of bio-ethanol in ternary blends, offering a promising avenue for reducing reliance on fossil fuels while maintaining engine efficiency

    The automatic detection of lumber anatomy in epidural injections for ultrasound guidance

    Full text link
    The purpose of this paper is to help the anesthesiologist to find the epidural depth automatically to make the first attempt to enter the path of the needle into the patient's body while it is clogged with bone and avoid causing a puncture in the surrounding areas of the patient`s back. In this regard, a morphology-based bone enhancement and detection followed by a Ramer-Douglas-Peucker algorithm and Hough transform is proposed. The proposed algorithm is tested on synthetic and real ultrasound images of laminar bone, and the results are compared with the template matching based Ligamentum Flavum (LF) detection method. Results indicate that the proposed method can faster detect the diagonal shape of the laminar bone and its corresponding epidural depth. Furthermore, the proposed method is reliable enough providing anesthesiologists with real-time information while an epidural needle insertion is performed. It has to be noted that using the ultrasound images is to help anesthesiologists to perform the blind injection, and due to quite a lot of errors occurred in ultrasound-imaging-based methods, these methods can not completely replace the tissue pressure-based method. And in the end, when the needle is injected into the area (dura space) measurements can only be trusted to the extent of tissue resistance. Despite the fairly limited amount of training data available in this study, a significant improvement of the segmentation speed of lumbar bones and epidural depth in ultrasound scans with a rational accuracy compared to the LF-based detection method was found.Comment: 34 pages, To be published in Medical Hypothese

    An Experimental-Intelligent Method to Predict Noise Value of Drilling in Dimension Stone Industry

    Get PDF
    The noise of drilling in the dimension stone business is unbearable for both the workplace and the people who work there. In order to reduce the negative effects drilling has on the health of the environment, the drilling noise has to be measured, assessed, and controlled. The main purpose of this work is to investigate an experimental-intelligent method to predict the noise value of drilling in the dimension stone industry. For this purpose, 135 laboratory tests are designed on five types of rocks (four types of hard rock and one type of soft rock): and their results are measured in the first step. In the second step, due to the unpredicted and uncertain issues in this case, artificial intelligence (AI) approaches are applied, and the modeling is conducted using three intelligent systems (IS): namely an adaptive neuro-fuzzy inference system-SCM (ANFIS-SCM): an adaptive neuro-fuzzy inference system-FCM (ANFIS-FCM): and the radial basis function network (RBF) neural network. 75% of the samples are considered for training, and the rest for testing. Several models are constructed, and the results indicate that although there is no significant difference between the models according to the performance indices, the proposed construction of ANFIS-SCM can be considered as an efficient tool in the evaluation of drilling noise. Finally, several scenarios are designed with different input modes, and the results obtained prove that the types of rock and the drill bits are more important than the operational characteristics of the machine

    The Effect of Combined Use of Vermicompost and Poultry Manure on the Growth and Yield of Cucumber Plants in Different Conditions of Deficit Irrigation

    Get PDF
    Introduction In sustainable farming systems, the use of organic fertilizers is of particular importance in increasing crop production and maintaining sustainable soil fertility. Nowadays, the consumption of organic foods is introduced to consumers as an alternative. The result of the application of chemical products is the crisis of environmental pollution, soil and water resources, and the health risk to human society. Nowadays, in order to reduce the effects of misuse of chemical inputs, chemical fertilizers can be replaced with organic biological fertilizers, including animal manure, compost, and green manure. In this regard, chicken manure has a positive effect on the physical, chemical, and biological characteristics of the soil, and due to its richness in uric acid, the nitrogen contained in it is used by the plant much faster than the nitrogen of other organic fertilizers. Vermicompost is considered a good source of soil fertility due to its organic materials. Organic matter in the soil improves the permeability and drainage of the soil and also prevents excessive dryness of the soil by maintaining sufficient moisture. Despite the fact that vermicompost can be used as a fertilizer in organic farming, high levels of this fertilizer may cause salinity effects in the plant, which affects the growth and development of the plant and even it can cause the death of cucumber as one of the crops sensitive to soil and water salinity. The cucumber (Cucumis sativus L.) is one of the important vegetables that can be produced in a greenhouse all year round. Fresh consumption of cucumber throughout the year has increased its production. The development of technology and the short growth period of this product has made it possible to grow it in most climate zones. Therefore, in this research, the effects of different levels of water deficit with the simultaneous application of vermicompost and chicken manure on cucumber plants in the Behbahan region have been investigated. Materials and Methods In this study, different levels of irrigation water, vermicompost, and poultry manure on ground cucumber were investigated. The experiment was performed in the form of split plots based on completely randomized design and the form of stacks. Treatments included three levels of poultry manure (2, 4 and 8 ton ha-1), three levels of vermicompost (3, 6 and 9 ton ha-1) and three levels of water stress (100, 75 and 50% of plant water requirement). Both vermicompost and poultry manure were applied to the soil before planting. Harvest was done every three days. Fruit weight, diameter and length, plant length, the protein of the dry matter of the fruit percentage, and leaf chlorophyll in each plot were carefully measured. Also, the yield and water productivity at the end of the season were calculated. Water productivity  Referring to the yield to irrigation water ratio, is obtained by the following relation (Payero et al., 2009): WP=Y/IR                                                                                                                               (1) In this equation, WP represents water productivity (kg/m3), Y denotes the yield (kg/ha), and IR shows the amount of irrigation water (m3/ha). Statistical analysis The analysis of variance for the results obtained from different treatments was conducted using SAS software (SAS 9.1, SAS Institute, Cary, NC, USA). The mean values of the main factors and interactive effects were compared using the Duncan method at the 1% and 5% levels of significance. Results and Discussion The results showed that irrigation, poultry manure and vermicompost had a significant effect on the measured parameters at the level of one and five percent probability. Reduction of water consumption reduced yield and yield components, but in this regard, no significant difference was observed between 100% and 75% of water requirement. The highest yield was obtained in the treatment of 100% of plant water requirement and consumption of 4 ton ha-1 of poultry manure and 6 ton ha-1 of vermicompost, in this regard, no significant difference was observed with the treatment of 75% of water requirement. According to the results obtained from this study, it can be said that there is no significant difference in terms of yield between treatments of 75 and 100% of plant water requirement. Therefore, the amount of water given to the plant can be reduced to 75% of the plant water requirement, and with proper management, less water can be consumed without a significant reduction in crop yield. Examining the effects of irrigation water on the amount of the protein of the dry matter of the fruit showed that the highest amount of the protein of the dry matter of the fruit (56.31%) was obtained in the treatment of 75% of the water requirement and the protein of the dry matter of the fruit was less in other treatments. The interaction effect of vermicompost and poultry manure resulted in the highest percentage of cucumber protein at a treatment of 4 tons ha-1 of poultry manure and 6 tons ha-1 of vermicompost (58.42%). However, when the simultaneous use of 8 tons ha-1 of poultry manure and different levels of vermicompost was employed, the percentage of protein in the fruit's dry matter decreased. The combination of drought stress, poultry manure, and vermicompost, along with their interaction effects, significantly influenced the chlorophyll a and b values at both the 1% and 5% probability levels. As the depth of irrigation water decreased, the amounts of chlorophyll a and b also decreased. The treatment with 100% water requirement of the plant showed the highest amounts of chlorophyll a (0.63 mg/g fresh weight) and chlorophyll b (0.36 mg/g fresh weight). However, no significant difference was observed compared to the 75% treatment. Regarding the interactions between vermicompost and poultry manure, it was found that when using 6 tons ha-1 of vermicompost to reduce yield and its components, the use of poultry manure should be reduced to 4 tons ha-1. On the other hand, when higher levels of vermicompost (9 tons ha-1) are used, the application of poultry manure should be reduced to 2 tons ha-1. Result According to the results obtained from this research, it can be said that there is no significant difference in performance between the treatments of providing 75% and 100% of the water requirement of the plant, therefore, the amount of water given to the plant can be reduced to the amount of 75% of the water requirement of the plant. With proper management, less water can be consumed without significantly reducing the yield of the product

    Stock assessment of the bony fishes of Golestan province

    Get PDF
    Total catches of bony fishes in the coastal of south Caspian Sea have been ended to 1554 ton in 1382. The catch of common carp Cyprinus carpio as a one of important commercial species has been lower than others species such as mahisephid, kolmeie and kafal. From commercial catch point of view, the catch of kolmeie is not very important, so that its catch was included only 2% of total bony fish catch in three provinces which are located in south of Caspian sea . In spite of lower common carp catch, in comparison with total bony fish catch in Golestan province more thanb70% catch was belong to Common carp. The higher catch kolmeie among three provinces was related to Guilan with 46% of total catches. Seasonal changes of common carp catch showed maximum and minimum catch were in April 83 and December 82 respectively. The most of (CPUE) was in April 83 and September, October 82. The trend of kolmeie catch showed low fluctuation. Three age groups were specified in kolmeie age composition high and low percent observed in 2 and 3 age groups respectively. Result of biometric information common carp showed most of catch was under standard fisheries catch

    PET/CT imaging of spinal inflammation and microcalcification in patients with low back pain: A pilot study on the quantification by artificial intelligence-based segmentation

    Get PDF
    Background: Current imaging modalities are often incapable of identifying nociceptive sources of low back pain (LBP). We aimed to characterize these by means of positron emission tomography/computed tomography (PET/CT) of the lumbar spine region applying tracers 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) targeting inflammation and active microcalcification, respectively. Methods: Using artificial intelligence (AI)-based quantification, we compared PET findings in two sex- and age-matched groups, a case group of seven males and five females, mean age 45 \ub1 14 years, with ongoing LBP and a similar control group of 12 pain-free individuals. PET/CT scans were segmented into three distinct volumes of interest (VOIs): lumbar vertebral bodies, facet joints and intervertebral discs. Maximum, mean and total standardized uptake values (SUVmax, SUVmean and SUVtotal) for FDG and NaF uptake in the 3 VOIs were measured and compared between groups. Holm–Bonferroni correction was applied to adjust for multiple testing. Results: FDG uptake was slightly higher in most locations of the LBP group including higher SUVmean in the intervertebral discs (0.96 \ub1 0.34 vs. 0.69 \ub1 0.15). All NaF uptake values were higher in cases, including higher SUVmax in the intervertebral discs (11.63 \ub1 3.29 vs. 9.45 \ub1 1.32) and facet joints (14.98 \ub1 6.55 vs. 10.60 \ub1 2.97). Conclusion: Observed intergroup differences suggest acute inflammation and microcalcification as possible nociceptive causes of LBP. AI-based quantification of relevant lumbar VOIs in PET/CT scans of LBP patients and controls appears to be feasible. These promising, early findings warrant further investigation and confirmation

    Pore-scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings

    Full text link
    We propose a method for effectively upscaling incompressible viscous flow in large random polydispersed sphere packings: the emphasis of this method is on the determination of the forces applied on the solid particles by the fluid. Pore bodies and their connections are defined locally through a regular Delaunay triangulation of the packings. Viscous flow equations are upscaled at the pore level, and approximated with a finite volume numerical scheme. We compare numerical simulations of the proposed method to detailed finite element (FEM) simulations of the Stokes equations for assemblies of 8 to 200 spheres. A good agreement is found both in terms of forces exerted on the solid particles and effective permeability coefficients

    Study on biological status of the Gorgan Bay

    Get PDF
    Present study carried out between September 2011 and October 2012 in 19 sampling sites in order to investigate the trophy level, productivity, and natural dominant living conditions in the Gorgan Bay. According to the provided maps from the shoreline, depth, and sediment, the total area and volume of Gorgan Bay is 466 square meters and 905.33 million cubic meters respectively. Also the physic-chemical parameters including: water temperature, EC, salinity, transparency, DO, BOD_5, pH, Ammonia, Nitrate, Total hardness, Total alkalinity, and phosphate are determined and studies. 3 main phylum, 12 orders, 6 classes, and 12 families from bottom living organisms (macro-benthos) were identified in this region. Standard deviation in TSI was from minimum 37 in March up to maximum 65 in September and the annual average was 53. According to the average TSI in different months, for five months namely as March, April, June, August, and February the dominant situation was eutrophy. For the rest of months namely as May, September, October, November, December, and January the dominant situation was Meso-trophic in the Bay. Based on calculation, minimum and maximum productivity in the Bay were 92.26 and 700.66 Kg per hectare in October and July respectively. The annual average of productivity was 195.10 Kg per hectare
    corecore