1,600 research outputs found

    Organic atmospheric particulate material

    Get PDF
    Carbonaceous compounds comprise a substantial fraction of atmospheric particulate matter (PM). Particulate organic material can be emitted directly into the atmosphere or formed in the atmosphere when the oxidation products of certain volatile organic compounds condense. Such products have lower volatilities than their parent molecules as a result of the fact that adding oxygen and/or nitrogen to organic molecules reduces volatility. Formation of secondary organic PM is often described in terms of a fractional mass yield, which relates how much PM is produced when a certain amount of a parent gaseous organic is oxidized. The theory of secondary organic PM formation is outlined, including the role of water, which is ubiquitous in the atmosphere. Available experimental studies on secondary organic PM formation and molecular products are summarized

    The database BIOSCAT: a tool for structure research by scattering and hydrodynamic methods

    Get PDF
    The crystal structures of a large number of proteins and nucleic acids are known and the corresponding sets of coordinates are stored in the Brookhaven Protein Data Bank. For structure investigations of biological macromolecules in solution, scattering and hydrodynamical methods are powerful biophysical tools when starting the data interpretation on the basis of the crystal structure of the molecules. The database BIOSCAT covers the main structural parameters estimable by X-ray scattering, translation and rotation diffusion methods and the X-ray scattering intensities and low- and high-resolution real-space electron distance distribution functions of 70 biological macromolecules and of oligonucleotides in standard conformation. The parameters and the scattered intensities are calculated from the atomic coordinates using the improved cube method and the real-space functions are estimated via a termination-error-reduced Fourier sine transformation. The database access is organized by the program PASSDB, which can generally be used for 'readable' databases. A simple query language allows enquiries into the database without knowledge of a programming language. The program CONVSQL converts the database into normalized relations that can be handled by structured query languages (SQLs)

    Modeling the Formation of Secondary Organic Aerosol. 1. Application of Theoretical Principles to Measurements Obtained in the α-Pinene/, β-Pinene/, Sabinene/, Δ^3-Carene/, and Cyclohexene/Ozone Systems

    Get PDF
    Secondary organic aerosol (SOA) forms in the atmosphere when volatile parent compounds are oxidized to form low-volatility products that condense to yield organic particulate matter (PM). Under conditions of intense photochemical smog, from 40 to 80% of the particulate organic carbon can be secondary in origin. Because describing multicomponent condensation requires a compound-by-compound identification and quantification of the condensable compounds, the complexity of ambient SOA has made it difficult to test the ability of existing gas/particle (G/P) partitioning theory to predict SOA formation in urban air. This paper examines that ability using G/P data from past laboratory chamber experiments carried out with five parent hydrocarbons (HCs) (four monoterpenes at 308 K and cyclohexene at 298 K) in which significant fractions (61−100%) of the total mass of SOA formed from those HCs were identified and quantified by compound. The model calculations were based on a matrix representation of the multicomponent, SOA G/P distribution process. The governing equations were solved by an iterative method. Input data for the model included (i) ΔHC (μg m^(-3)), the amount of reacted parent hydrocarbon; (ii) the α values that give the total concentration T (gas + particle phase, ng m^(-3)) values for each product i according to Ti = 10^3 αiΔHC; (iii) estimates of the pure compound liquid vapor pressure P^o_L values (at the reaction temperature) for the products; and (iv) UNIFAC parameters for estimating activity coefficients in the SOA phase for the products as a function of SOA composition. The model predicts the total amount M_o (μg m^(-3)) of organic aerosol that will form from the reaction of ΔHC, the total aerosol yield Y (= M_o/ΔHC), and the compound-by-compound yield values Y_i. An impediment in applying the model is the lack of literature data on P^o_L values for the compounds of interest or even on P^o_L values for other, similarly low-volatility compounds. This was overcome in part by using the G/P data from the α-pinene and cyclohexene experiments to determine P^o_L values for use (along with a set of 14 other independent polar compounds) in calculating UNIFAC vapor pressure parameters that were, in turn, used to estimate all of the needed P^o_L values. The significant degree of resultant circularity in the calculations for α-pinene and cyclohexene helped lead to the good agreement that was found between the Y_i values predicted by the model, and those measured experimentally for those two compounds. However, the model was also able to predict the aerosol yield values from β-pinene, sabinene, and Δ^3-carene, for which there was significatly less circularity in the calculations, thereby providing evidence supporting the idea that given the correct input information, SOA formation can in fact be accurately modeled as a multicomponent condensation process

    Risk of Type 2 Diabetes and Obesity Is Differentially Associated with Variation in FTO in Whites and African-Americans in the ARIC Study

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the fat mass and obesity associated (FTO) gene are associated with body mass index (BMI) in populations of European descent. The FTO rs9939609 variant, first detected in a genome-wide association study of diabetes, conferred an increased disease risk that was abolished after adjustment for BMI, suggesting that the association may be due to variation in adiposity. The relationship between diabetes, four previously identified FTO polymorphisms that span a 19.6-kb genomic region, and obesity was therefore evaluated in the biracial population-based Atherosclerosis Risk in Communities Study with the goal of further refining the association by comparing results between the two ethnic groups. The prevalence of diabetes and obesity (BMI ≥30 kg/m2) was established at baseline, and diabetes was determined by either self-report, a fasting glucose level ≥126 mg/dL, or non-fasting glucose ≥200 mg/dL. There were 1,004 diabetes cases and 10,038 non-cases in whites, and 670 cases and 2,780 non-cases in African-Americans. Differences in mean BMI were assessed by a general linear model, and multivariable logistic regression was used to predict the risk of diabetes and obesity. For white participants, the FTO rs9939609 A allele was associated with an increased risk of diabetes (odds ratio (OR)  = 1.19, p<0.001) and obesity (OR = 1.22, p<0.001) under an additive genetic model that was similar for all of the SNPs analyzed. In African-Americans, only the rs1421085 C allele was a determinant of obesity risk (OR = 1.17, p = 0.05), but was found to be protective against diabetes (OR = 0.79, p = 0.03). Adjustment for BMI did not eliminate any of the observed associations with diabetes. Significant statistical interaction between race and the FTO variants suggests that the effect on diabetes susceptibility may be context dependent

    A burst search for gravitational waves from binary black holes

    Full text link
    Compact binary coalescence (CBC) is one of the most promising sources of gravitational waves. These sources are usually searched for with matched filters which require accurate calculation of the GW waveforms and generation of large template banks. We present a complementary search technique based on algorithms used in un-modeled searches. Initially designed for detection of un-modeled bursts, which can span a very large set of waveform morphologies, the search algorithm presented here is constrained for targeted detection of the smaller subset of CBC signals. The constraint is based on the assumption of elliptical polarisation for signals received at the detector. We expect that the algorithm is sensitive to CBC signals in a wide range of masses, mass ratios, and spin parameters. In preparation for the analysis of data from the fifth LIGO-Virgo science run (S5), we performed preliminary studies of the algorithm on test data. We present the sensitivity of the search to different types of simulated CBC waveforms. Also, we discuss how to extend the results of the test run into a search over all of the current LIGO-Virgo data set.Comment: 12 pages, 4 figures, 2 tables, submitted for publication in CQG in the special issue for the conference proceedings of GWDAW13; corrected some typos, addressed some minor reviewer comments one section restructured and references updated and correcte

    Early Advanced LIGO binary neutron-star sky localization and parameter estimation

    Get PDF
    2015 will see the first observations of Advanced LIGO and the start of the gravitational-wave (GW) advanced-detector era. One of the most promising sources for ground-based GW detectors are binary neutron-star (BNS) coalescences. In order to use any detections for astrophysics, we must understand the capabilities of our parameter-estimation analysis. By simulating the GWs from an astrophysically motivated population of BNSs, we examine the accuracy of parameter inferences in the early advanced-detector era. We find that sky location, which is important for electromagnetic follow-up, can be determined rapidly (~5 s), but that sky areas may be hundreds of square degrees. The degeneracy between component mass and spin means there is significant uncertainty for measurements of the individual masses and spins; however, the chirp mass is well measured (typically better than 0.1%).Comment: 4 pages, 2 figures. Published in the proceedings of Amaldi 1

    Evidence for Three Novel QTLs for Adiposity on Chromosome 2 With Epistatic Interactions: The NHLBI Family Heart Study

    Get PDF
    We sought to identify quantitative trait loci (QTLs) by genome-wide linkage analysis for BMI and waist circumference (WC) exploring various strategies to address heterogeneity including covariate adjustments and complex models based on epistatic components of variance. Because cholesterol-lowering drugs and diabetes medications may affect adiposity and risk of coronary heart disease, we excluded subjects medicated for hypercholesterolemia and hyperglycemia. The evidence of linkage increased on 2p25 (BMI: lod = 1.59 vs. 2.43, WC: lod = 1.32 vs. 2.26). Because environmental and/or genetic components could mask the effect of a specific locus, we investigated further whether a QTL could influence adiposity independently of lipid pathway and dietary habits. Strong evidence of linkage on 2p25 (BMI: lod = 4.31; WC: lod = 4.23) was found using Willet’s dietary factors and lipid profile together with age and sex in adjustment. It suggests that lipid profile and dietary habits are confounding factors for detecting a 2p25 QTL for adiposity. Because evidence of linkage has been previously detected for BMI on 7q34 and 13q14 in National Heart, Lung, and Blood Institute Family Heart Study (NHLBI FHS), and for diabetes on 15q13, we investigated epistasis between chromosome 2 and these loci. Significant epistatic interactions were found between QTLs 2p25 and 7q34, 2q37 and 7q34, 2q31 and 13q14, and 2q31–q36 and 15q13. These results suggest multiple pathways and factors involving genetic and environmental effects influencing adiposity. By taking some of these known factors into account, we clarified our linkage evidence of a QTL on 2p25 influencing BMI and WC. The 2p25, 2q24–q31, and 2q36–q37 showed evidence of epistatic interaction with 7q34, 13q14, and 15q13
    corecore