117 research outputs found
Point defects in silicon after zinc diffusion - a deep level transient spectroscopy and spreading-resistance profiling study
We present results from spreading-resistance profiling and deep level transient spectroscopy on Si after Zn diffusion at 1294 K. Concentration profiles of substitutional in dislocation-free and highly dislocated Si are described by a diffusion mechanism involving interstitial-substitutional exchange. Additional annealing at 873 K following quenching from the diffusion temperature is required in the case of dislocation-free Si to electrically activate . The formation of complexes of with unwanted impurities upon quenching is discussed. Additional Ni diffusion experiments as well as total energy calculations suggest that Ni is a likely candidate for the passivation of Zns. From total energy calculations we find that the formation of complexes involving Zn and Ni depends on the position of the Fermi level. This explains differences in results from spreading-resistance profiling and deep level transient spectroscopy on near-intrinsic and p-type Si, respectively
Ab initio estimate of temperature dependence of electrical conductivity in a model amorphous material: hydrogenated amorphous silicon
We present an ab initio calculation of the DC conductivity of amorphous
silicon and hydrogenated amorphous silicon. The Kubo-Greenwood formula is used
to obtain the DC conductivity, by thermal averaging over extended dynamical
simulation. Its application to disordered solids is discussed. The conductivity
is computed for a wide range of temperatures and doping is explored in a naive
way by shifting the Fermi level. We observed the Meyer-Neldel rule for the
electrical conductivity with E_MNR = 0.06 eV and a temperature coefficient of
resistance, TCR ~ -2.0% K^-1 for a-Si:H. In general, experimental trends are
reproduced by these calculations, and this suggests the possible utility of the
approach for modeling carrier transport in other disordered systems.Comment: 9 pages, 8 figures, submitted to PRB Comments: corrected typos,
referee's comments include
On the structure of the energy distribution function in the hopping regime
The impact of the dispersion of the transport coefficients on the structure
of the energy distribution function for charge carriers far from equilibrium
has been investigated in effective-medium approximation for model densities of
states. The investigations show that two regimes can be observed in energy
relaxation processes. Below a characteristic temperature the structure of the
energy distribution function is determined by the dispersion of the transport
coefficients. Thermal energy diffusion is irrelevant in this regime. Above the
characteristic temperature the structure of the energy distribution function is
determined by energy diffusion. The characteristic temperature depends on the
degree of disorder and increases with increasing disorder. Explicit expressions
for the energy distribution function in both regimes are derived for a constant
and an exponential density of states.Comment: 16 page
Percolation-to-hopping crossover in conductor-insulator composites
Here, we show that the conductivity of conductor-insulator composites in
which electrons can tunnel from each conducting particle to all others may
display both percolation and tunneling (i.e. hopping) regimes depending on few
characteristics of the composite. Specifically, we find that the relevant
parameters that give rise to one regime or the other are (where is
the size of the conducting particles and is the tunneling length) and the
specific composite microstructure. For large values of , percolation
arises when the composite microstructure can be modeled as a regular lattice
that is fractionally occupied by conducting particle, while the tunneling
regime is always obtained for equilibrium distributions of conducting particles
in a continuum insulating matrix. As decreases the percolating behavior
of the conductivity of lattice-like composites gradually crosses over to the
tunneling-like regime characterizing particle dispersions in the continuum. For
values lower than the conductivity has tunneling-like
behavior independent of the specific microstructure of the composite.Comment: 8 pages, 5 figure
Solution of the tunneling-percolation problem in the nanocomposite regime
We noted that the tunneling-percolation framework is quite well understood at
the extreme cases of percolation-like and hopping-like behaviors but that the
intermediate regime has not been previously discussed, in spite of its
relevance to the intensively studied electrical properties of nanocomposites.
Following that we study here the conductivity of dispersions of particle
fillers inside an insulating matrix by taking into account explicitly the
filler particle shapes and the inter-particle electron tunneling process. We
show that the main features of the filler dependencies of the nanocomposite
conductivity can be reproduced without introducing any \textit{a priori}
imposed cut-off in the inter-particle conductances, as usually done in the
percolation-like interpretation of these systems. Furthermore, we demonstrate
that our numerical results are fully reproduced by the critical path method,
which is generalized here in order to include the particle filler shapes. By
exploiting this method, we provide simple analytical formulas for the composite
conductivity valid for many regimes of interest. The validity of our
formulation is assessed by reinterpreting existing experimental results on
nanotube, nanofiber, nanosheet and nanosphere composites and by extracting the
characteristic tunneling decay length, which is found to be within the expected
range of its values. These results are concluded then to be not only useful for
the understanding of the intermediate regime but also for tailoring the
electrical properties of nanocomposites.Comment: 13 pages with 8 figures + 10 pages with 9 figures of supplementary
material (Appendix B
Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair
We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy
Transport properties of nonhomogeneous segregated composites
In conductor-insulator composites in which the conducting particles are
dispersed in an insulating continuous matrix the electrical connectedness is
established by interparticle quantum tunneling. A recent formulation of the
transport problem in this kind of composites treats each conducting particle as
electrically connected to all others via tunneling conductances to form a
global tunneling network. Here, we extend this approach to nonhomogeneous
composites with a segregated distribution of the conducting phase. We consider
a model of segregation in which large random insulating spherical inclusions
forbid small conducting particles to occupy homogeneously the volume of the
composite, and allow tunneling between all pairs of the conducting objects. By
solving numerically the corresponding tunneling resistor network, we show that
the composite conductivity is enhanced by segregation and that it may remain
relatively large also for very small values of the conducting filler
concentration. We interpret this behavior by a segregation-induced reduction of
the interparticle distances, which is confirmed by a critical path
approximation applied to the segregated network. Furthermore, we identify an
approximate but accurate scaling relation permitting to express the
conductivity of a segregated systems in terms of the interparticle distances of
a corresponding homogeneous system, and which provides an explicit formula for
the conductivity which we apply to experimental data on segregated RuO2-cermet
composites.Comment: 10 pages, 9 figure
Approaching disorder-free transport in high-mobility conjugated polymers.
Conjugated polymers enable the production of flexible semiconductor devices that can be processed from solution at low temperatures. Over the past 25 years, device performance has improved greatly as a wide variety of molecular structures have been studied. However, one major limitation has not been overcome; transport properties in polymer films are still limited by pervasive conformational and energetic disorder. This not only limits the rational design of materials with higher performance, but also prevents the study of physical phenomena associated with an extended π-electron delocalization along the polymer backbone. Here we report a comparative transport study of several high-mobility conjugated polymers by field-effect-modulated Seebeck, transistor and sub-bandgap optical absorption measurements. We show that in several of these polymers, most notably in a recently reported, indacenodithiophene-based donor-acceptor copolymer with a near-amorphous microstructure, the charge transport properties approach intrinsic disorder-free limits at which all molecular sites are thermally accessible. Molecular dynamics simulations identify the origin of this long sought-after regime as a planar, torsion-free backbone conformation that is surprisingly resilient to side-chain disorder. Our results provide molecular-design guidelines for 'disorder-free' conjugated polymers.We gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) through a programme grant (EP/G060738/1) and the Technology Strategy Board (TSB) (PORSCHED project). D. Venkateshvaran acknowledges financial support from the Cambridge Commonwealth Trust through a Cambridge International Scholarship. K. Broch acknowledges post-doctoral fellowship support from the German Research Foundation (DFG). Mateusz Zelazny acknowledges funding from the NanoDTC in Cambridge. The work in Mons was supported by the European Commission / Région Wallonne (FEDER – Smartfilm RF project), the Interuniversity Attraction Pole program of the Belgian Federal Science Policy Office (PAI 7/05), Programme d’Excellence de la Région Wallonne (OPTI2MAT project) and FNRS-FRFC. D.B. and J.C. are FNRS Research Fellows.This is the accepted manuscript. The final version's available from Nature at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13854.html
- …