3,288 research outputs found
Theory of Kondo lattices and its application to high-temperature superconductivity and pseudo-gaps in cuprate oxides
A theory of Kondo lattices is developed for the t-J model on a square
lattice. The spin susceptibility is described in a form consistent with a
physical picture of Kondo lattices: Local spin fluctuations at different sites
interact with each other by a bare intersite exchange interaction, which is
mainly composed of two terms such as the superexchange interaction, which
arises from the virtual exchange of spin-channel pair excitations of electrons
across the Mott-Hubbard gap, and an exchange interaction arising from that of
Gutzwiller's quasi-particles. The bare exchange interaction is enhanced by
intersite spin fluctuations developed because of itself. The enhanced exchange
interaction is responsible for the development of superconducting fluctuations
as well as the Cooper pairing between Gutzwiller's quasi-particles. On the
basis of the microscopic theory, we develop a phenomenological theory of
low-temperature superconductivity and pseudo-gaps in the under-doped region as
well as high-temperature superconductivity in the optimal-doped region.
Anisotropic pseudo-gaps open mainly because of d\gamma-wave superconducting
low-energy fluctuations: Quasi-particle spectra around (\pm\pi/a,0) and
(0,\pm\pi/a), with a the lattice constant, or X points at the chemical
potential are swept away by strong inelastic scatterings, and quasi-particles
are well defined only around (\pm\pi/2a,\pm\pi/2a) on the Fermi surface or
line. As temperatures decrease in the vicinity of superconducting critical
temperatures, pseudo-gaps become smaller and the well-defined region is
extending toward X points. The condensation of d\gamma-wave Cooper pairs
eventually occurs at low enough temperatures when the pair breaking by
inelastic scatterings becomes small enough.Comment: 15 pages, 14 figure
Coexistence of double-Q spin density wave and multi-Q pair density wave in cuprate oxide superconductors
Spatial 4a x 4a modulations, with a the lattice constant of CuO_2 planes, or
the so called checkerboards can arise from double-Q spin density wave (SDW)
with Q_1 = (pm pi/a, pm 3 pi/4a) and Q_2 = (pm 3 pi/4a, pm pi/a). When multi-Q
pair density wave, that is, the condensation of d gamma-wave Cooper pairs with
zero total momenta, pm 2Q_1, pm 2Q_2, pm 4Q_1, pm 4Q_2, and so on is induced by
the SDW, gaps can have fine structures similar to those of the so called
zero-temperature pseudogaps.Comment: 4 pages, 3 figure
Frustrated electron liquids in the Hubbard model
The ground state of the Hubbard model is studied within the constrained
Hilbert space where no order parameter exists. The self-energy of electrons is
decomposed into the single-site and multisite self-energies. The calculation of
the single-site self-energy is mapped to a problem of self-consistently
determining and solving the Anderson model. When an electron reservoir is
explicitly considered, it is proved that the single-site self-energy is that of
a normal Fermi liquid even if the multisite self-energy is anomalous. Thus, the
ground state is a normal Fermi liquid in the supreme single-site approximation
(S^3A). In the strong-coupling regime, the Fermi liquid is stabilized by the
Kondo effect in the S^3A and is further stabilized by the Fock-type term of the
superexchange interaction or the resonating-valence-bond (RVB) mechanism beyond
the S^3A. The stabilized Fermi liquid is frustrated as much as an RVB spin
liquid in the Heisenberg model. It is a relevant unperturbed state that can be
used to study a normal or anomalous Fermi liquid and an ordered state in the
whole Hilbert space by Kondo lattice theory. Even if higher-order multisite
terms than the Fock-type term are considered, the ground state cannot be a Mott
insulator. It can be merely a gapless semiconductor even if the multisite
self-energy is so anomalous that it is divergent at the chemical potential. A
Mott insulator is only possible as a high temperature phase.Comment: 11 pages, no figur
Thermal conductivity of the thermoelectric layered cobalt oxides measured by the Harman method
In-plane thermal conductivity of the thermoelectric layered cobalt oxides has
been measured using the Harman method, in which thermal conductivity is
obtained from temperature gradient induced by applied current. We have found
that the charge reservoir block (the block other than the CoO block)
dominates the thermal conduction, where a nano-block integration concept is
effective for material design. We have further found that the thermal
conductivity shows a small but finite in-plane anisotropy between and
axes, which can be ascribed to the misfit structure.Comment: 4 pages, 4 figures, J. Appl. Phys. (scheduled on July 1, 2004
Magnetic and charge structures in itinerant-electron magnets: Coexistence of multiple SDW and CDW
A theory of Kondo lattices is applied to studying possible magnetic and
charge structures of itinerant-electron antiferromagnets. Even helical spin
structures can be stabilized when the nesting of the Fermi surface is not sharp
and the superexchange interaction, which arises from the virtual exchange of
pair excitations across the Mott-Hubbard gap, is mainly responsible for
magnetic instability. Sinusoidal spin structures or spin density waves (SDW)
are only stabilized when the nesting of the Fermi surface is sharp enough and a
novel exchange interaction arising from that of pair excitations of
quasi-particles is mainly responsible for magnetic instability. In particular,
multiple SDW are stabilized when their incommensurate ordering wave-numbers
are multiple; magnetizations of different components
are orthogonal to each other in double and triple SDW when magnetic anisotropy
is weak enough. Unless are commensurate, charge density waves
(CDW) with coexist with SDW with . Because the
quenching of magnetic moments by the Kondo effect depends on local numbers of
electrons, the phase of CDW or electron densities is such that magnetic moments
are large where the quenching is weak. It is proposed that the so called stipe
order in cuprate-oxide high-temperature superconductors must be the coexisting
state of double incommensurate SDW and CDW.Comment: 10 pages, no figure
Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells
We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an
emphasis on calculating the valley splitting. The theory introduces a valley
coupling parameter, , which encapsulates the physics of the quantum well
interface. The new effective mass parameter is computed by means of a tight
binding theory. The resulting formalism provides rather simple analytical
results for several geometries of interest, including a finite square well, a
quantum well in an electric field, and a modulation doped two-dimensional
electron gas. Of particular importance is the problem of a quantum well in a
magnetic field, grown on a miscut substrate. The latter may pose a numerical
challenge for atomistic techniques like tight-binding, because of its
two-dimensional nature. In the effective mass theory, however, the results are
straightforward and analytical. We compare our effective mass results with
those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR
Resonant X-Ray Scattering from the Quadrupolar Ordering Phase of CeB_6
We theoretically investigate the origin of the resonant x-ray scattering
(RXS) signal near the Ce absorption edge in the quadrupolar ordering
phase of CeB, considering the intersite interaction between the
states in the initial state. The anisotropic charge distribution of the
states modulates the states through the intra-atomic Coulomb interaction
and thereby generates a large RXS superlattice intensity. The temperature and
magnetic field dependence indicates that the induced dipolar and octupolar
orders have little influence on the RXS spectra, in good agreement with the
recent experiment.Comment: 4 pages, 4 figure
Opening of a pseudogap in a quasi-two dimensional superconductor due to critical thermal fluctuations
We examine the role of the anisotropy of superconducting critical thermal
fluctuations in the opening of a pseudogap in a quasi-two dimensional
superconductor such as a cuprate-oxide high-temperature superconductor. When
the anisotropy between planes and their perpendicular axis is large enough and
its superconducting critical temperature T_c is high enough, the fluctuations
are much developed in its critical region so that lifetime widths of
quasiparticles are large and the energy dependence of the selfenergy deviates
from that of Landau's normal Fermi liquids. A pseudogap opens in such a
critical region because quasiparticle spectra around the chemical potential are
swept away due to the large lifetime widths. The pseudogap never smoothly
evolves into a superconducting gap; it starts to open at a temperature higher
than T_c while the superconducting gap starts to open just at T_c. When T_c is
rather low but the ratio of varepsilon_G(0)/k_BT_c, with varepsilon_G(0) the
superconducting gap at T=0K and k_B the Boltzmann constant, is much larger than
a value about 4 according to the mean-field theory, the pseudogap must be
closing as temperature T approaches to the low T_c because thermal fluctuations
become less developed as T decreases. Critical thermal fluctuations cannot
cause the opening of a prominent pseudogap in an almost isotropic three
dimensional superconductor, even if its T_c is high.Comment: 25 pages, 5 figures (14 subfigures
Complete Boolean algebras are Bousfield lattices
Given a complete Heyting algebra we construct an algebraic tensor
triangulated category whose Bousfield lattice is the Booleanization of the
given Heyting algebra. As a consequence we deduce that any complete Boolean
algebra is the Bousfield lattice of some tensor triangulated category. Using
the same ideas we then give two further examples illustrating some interesting
behaviour of the Bousfield lattice.Comment: 10 pages, update to clarify the products occurring in the main
constructio
Theory of Coupled Multipole Moments Probed by X-ray Scattering in CeB
A minimal model for multipole orders in CeB shows that degeneracy of the
quadrupole order parameters and strong spin-orbit coupling lead to peculiar
temperature and magnetic-field dependences of the X-ray reflection intensity at
superlattice Bragg points. Furthermore, the intensity depends sensitively on
the surface direction. These theoretical results explain naturally recent X-ray
experiments in phases II and III of CeB. It is predicted that under weak
magnetic field perpendicular to the (111) surface, the reflection intensity
should change non-monotonically as a function of temperature.Comment: 4 pages, 5 figure
- …