3,777 research outputs found
Non-Markovian dynamics in atom-laser outcoupling from a double-well Bose-Einstein condensate
We investigate the dynamics of a continuous atom laser based on the merging
of independently formed atomic condensates. In a first attempt to understand
the dynamics of the system, we consider two independent elongated Bose-Einstein
condensates which approach each other and focus on intermediate inter-trap
distances so that a two-mode model is well justified. In the framework of a
mean-field theory, we discuss the quasi steady-state population of the traps as
well as the energy distribution of the outcoupled atoms.Comment: 21 pages, 9 figure, to appear in J. Phys.
Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+
We present a very efficient technique for solving the three-dimensional
time-dependent Schrodinger equation. Our method is applicable to a wide range
of problems where a fullly three-dimensional solution is required, i.e., to
cases where no symmetries exist that reduce the dimensionally of the problem.
Examples include arbitrarily oriented molecules in external fields and atoms
interacting with elliptically polarized light. We demonstrate that even in such
cases, the three-dimensional problem can be decomposed exactly into two
two-dimensional problems at the cost of introducing a trivial rotation
transformation. We supplement the theoretical framework with numerical results
on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure
New approach to 3D electrostatic calculations for micro-pattern detectors
We demonstrate practically approximation-free electrostatic calculations of
micromesh detectors that can be extended to any other type of micropattern
detectors. Using newly developed Boundary Element Method called Robin Hood
Method we can easily handle objects with huge number of boundary elements
(hundreds of thousands) without any compromise in numerical accuracy. In this
paper we show how such calculations can be applied to Micromegas detectors by
comparing electron transparencies and gains for four different types of meshes.
We demonstrate inclusion of dielectric material by calculating the electric
field around different types of dielectric spacers
Non-Markovian Decay of a Three Level Cascade Atom in a Structured Reservoir
We present a formalism that enables the study of the non-Markovian dynamics
of a three-level ladder system in a single structured reservoir. The
three-level system is strongly coupled to a bath of reservoir modes and two
quantum excitations of the reservoir are expected. We show that the dynamics
only depends on reservoir structure functions, which are products of the mode
density with the coupling constant squared. This result may enable pseudomode
theory to treat multiple excitations of a structured reservoir. The treatment
uses Laplace transforms and an elimination of variables to obtain a formal
solution. This can be evaluated numerically (with the help of a numerical
inverse Laplace transform) and an example is given. We also compare this result
with the case where the two transitions are coupled to two separate structured
reservoirs (where the example case is also analytically solvable)
Security bound of two-bases quantum key-distribution protocols using qudits
We investigate the security bounds of quantum cryptographic protocols using
-level systems. In particular, we focus on schemes that use two mutually
unbiased bases, thus extending the BB84 quantum key distribution scheme to
higher dimensions. Under the assumption of general coherent attacks, we derive
an analytic expression for the ultimate upper security bound of such quantum
cryptography schemes. This bound is well below the predictions of optimal
cloning machines. The possibility of extraction of a secret key beyond
entanglement distillation is discussed. In the case of qutrits we argue that
any eavesdropping strategy is equivalent to a symmetric one. For higher
dimensions such an equivalence is generally no longer valid.Comment: 12 pages, 2 figures, to appear in Phys. Rev.
Effects of interatomic collisions on atom laser outcoupling
We present a computational approach to the outcoupling in a simple
one-dimensional atom laser model, the objective being to circumvent
mathematical difficulties arising from the breakdown of the Born and Markov
approximations. The approach relies on the discretization of the continuum
representing the reservoir of output modes, which allows the treatment of
arbitrary forms of outcoupling as well as the incorporation of non-linear terms
in the Hamiltonian, associated with interatomic collisions. By considering a
single-mode trapped condensate, we study the influence of elastic collisions
between trapped and free atoms on the quasi steady-state population of the
trap, as well as the energy distribution and the coherence of the outcoupled
atoms.Comment: 25 pages, 11 figures, to appear in J. Phys.
Measurement of scintillation from proportional electron multiplication in liquid xenon using a needle
Charge amplification in liquids could provide single-phase xenon time projection chambers with background discrimination and fiducialisation capabilities similar to those found in dual-phase detectors. Although efforts to achieve the high electric field required for charge amplification and proportional scintillation in liquid xenon have been previously reported, their application to large-scale detectors remains elusive. This work presents a new approach to this challenge, where — instead of the thin-wire approach of previous studies — a needle-like high-voltage electrode is employed to demonstrate proportional charge amplification and secondary scintillation production in liquid xenon. This is an important milestone towards the development of an electrode structure that could be utilised in a large-scale, single-phase time projection chamber with dual read-out
Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes
Many fixed-parameter tractable algorithms using a bounded search tree have
been repeatedly improved, often by describing a larger number of branching
rules involving an increasingly complex case analysis. We introduce a novel and
general search strategy that branches on the forbidden subgraphs of a graph
class relaxation. By using the class of -sparse graphs as the relaxed
graph class, we obtain efficient bounded search tree algorithms for several
parameterized deletion problems. We give the first non-trivial bounded search
tree algorithms for the cograph edge-deletion problem and the trivially perfect
edge-deletion problems. For the cograph vertex deletion problem, a refined
analysis of the runtime of our simple bounded search algorithm gives a faster
exponential factor than those algorithms designed with the help of complicated
case distinctions and non-trivial running time analysis [21] and computer-aided
branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and
Applications (DMAA
CO2 and Radon Emissions as Precursors of Seismic Activity
AbstractThis paper reports a review on the relationship between seismic activity and the emissions of CO2 and radon. Direct, indirect and sampling methods are mainly employed to measure CO2 flux and concentration in seismic areas. The accumulation chamber technique is the mostly used in the literature. Radon gas emission in seismic areas can be considered as a short-term pre-seismic precursor. The study and the measurement of radon gas activity prior to earthquakes can be performed through active techniques, with the use of high-precision active monitors and through passive techniques with the use of passive detectors. Several investigators report models to explain the anomalous behavior of in-earth fluid gasses prior to earthquakes. Models are described and discussed
Quantum asymmetric cryptography with symmetric keys
Based on quantum encryption, we present a new idea for quantum public-key
cryptography (QPKC) and construct a whole theoretical framework of a QPKC
system. We show that the quantum-mechanical nature renders it feasible and
reasonable to use symmetric keys in such a scheme, which is quite different
from that in conventional public-key cryptography. The security of our scheme
is analyzed and some features are discussed. Furthermore, the state-estimation
attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
- …