3,777 research outputs found

    Non-Markovian dynamics in atom-laser outcoupling from a double-well Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a continuous atom laser based on the merging of independently formed atomic condensates. In a first attempt to understand the dynamics of the system, we consider two independent elongated Bose-Einstein condensates which approach each other and focus on intermediate inter-trap distances so that a two-mode model is well justified. In the framework of a mean-field theory, we discuss the quasi steady-state population of the traps as well as the energy distribution of the outcoupled atoms.Comment: 21 pages, 9 figure, to appear in J. Phys.

    Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+

    Get PDF
    We present a very efficient technique for solving the three-dimensional time-dependent Schrodinger equation. Our method is applicable to a wide range of problems where a fullly three-dimensional solution is required, i.e., to cases where no symmetries exist that reduce the dimensionally of the problem. Examples include arbitrarily oriented molecules in external fields and atoms interacting with elliptically polarized light. We demonstrate that even in such cases, the three-dimensional problem can be decomposed exactly into two two-dimensional problems at the cost of introducing a trivial rotation transformation. We supplement the theoretical framework with numerical results on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure

    New approach to 3D electrostatic calculations for micro-pattern detectors

    Get PDF
    We demonstrate practically approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using newly developed Boundary Element Method called Robin Hood Method we can easily handle objects with huge number of boundary elements (hundreds of thousands) without any compromise in numerical accuracy. In this paper we show how such calculations can be applied to Micromegas detectors by comparing electron transparencies and gains for four different types of meshes. We demonstrate inclusion of dielectric material by calculating the electric field around different types of dielectric spacers

    Non-Markovian Decay of a Three Level Cascade Atom in a Structured Reservoir

    Get PDF
    We present a formalism that enables the study of the non-Markovian dynamics of a three-level ladder system in a single structured reservoir. The three-level system is strongly coupled to a bath of reservoir modes and two quantum excitations of the reservoir are expected. We show that the dynamics only depends on reservoir structure functions, which are products of the mode density with the coupling constant squared. This result may enable pseudomode theory to treat multiple excitations of a structured reservoir. The treatment uses Laplace transforms and an elimination of variables to obtain a formal solution. This can be evaluated numerically (with the help of a numerical inverse Laplace transform) and an example is given. We also compare this result with the case where the two transitions are coupled to two separate structured reservoirs (where the example case is also analytically solvable)

    Security bound of two-bases quantum key-distribution protocols using qudits

    Full text link
    We investigate the security bounds of quantum cryptographic protocols using dd-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the BB84 quantum key distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid.Comment: 12 pages, 2 figures, to appear in Phys. Rev.

    Effects of interatomic collisions on atom laser outcoupling

    Full text link
    We present a computational approach to the outcoupling in a simple one-dimensional atom laser model, the objective being to circumvent mathematical difficulties arising from the breakdown of the Born and Markov approximations. The approach relies on the discretization of the continuum representing the reservoir of output modes, which allows the treatment of arbitrary forms of outcoupling as well as the incorporation of non-linear terms in the Hamiltonian, associated with interatomic collisions. By considering a single-mode trapped condensate, we study the influence of elastic collisions between trapped and free atoms on the quasi steady-state population of the trap, as well as the energy distribution and the coherence of the outcoupled atoms.Comment: 25 pages, 11 figures, to appear in J. Phys.

    Measurement of scintillation from proportional electron multiplication in liquid xenon using a needle

    Get PDF
    Charge amplification in liquids could provide single-phase xenon time projection chambers with background discrimination and fiducialisation capabilities similar to those found in dual-phase detectors. Although efforts to achieve the high electric field required for charge amplification and proportional scintillation in liquid xenon have been previously reported, their application to large-scale detectors remains elusive. This work presents a new approach to this challenge, where — instead of the thin-wire approach of previous studies — a needle-like high-voltage electrode is employed to demonstrate proportional charge amplification and secondary scintillation production in liquid xenon. This is an important milestone towards the development of an electrode structure that could be utilised in a large-scale, single-phase time projection chamber with dual read-out

    Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes

    Full text link
    Many fixed-parameter tractable algorithms using a bounded search tree have been repeatedly improved, often by describing a larger number of branching rules involving an increasingly complex case analysis. We introduce a novel and general search strategy that branches on the forbidden subgraphs of a graph class relaxation. By using the class of P4P_4-sparse graphs as the relaxed graph class, we obtain efficient bounded search tree algorithms for several parameterized deletion problems. We give the first non-trivial bounded search tree algorithms for the cograph edge-deletion problem and the trivially perfect edge-deletion problems. For the cograph vertex deletion problem, a refined analysis of the runtime of our simple bounded search algorithm gives a faster exponential factor than those algorithms designed with the help of complicated case distinctions and non-trivial running time analysis [21] and computer-aided branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and Applications (DMAA

    CO2 and Radon Emissions as Precursors of Seismic Activity

    Get PDF
    AbstractThis paper reports a review on the relationship between seismic activity and the emissions of CO2 and radon. Direct, indirect and sampling methods are mainly employed to measure CO2 flux and concentration in seismic areas. The accumulation chamber technique is the mostly used in the literature. Radon gas emission in seismic areas can be considered as a short-term pre-seismic precursor. The study and the measurement of radon gas activity prior to earthquakes can be performed through active techniques, with the use of high-precision active monitors and through passive techniques with the use of passive detectors. Several investigators report models to explain the anomalous behavior of in-earth fluid gasses prior to earthquakes. Models are described and discussed

    Quantum asymmetric cryptography with symmetric keys

    Full text link
    Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
    • …
    corecore