9,680 research outputs found

    Lepton flavor violating Higgs boson decays in seesaw models: new discussions

    Full text link
    The lepton flavor violating decay of the Standard Model-like Higgs boson (LFVHD), h->\mu\tau, is discussed in seesaw models at the one-loop level. Based on particular analytic expressions of Passarino-Veltman functions, the two unitary and 't Hooft Feynman gauges are used to compute the branching ratio of LFVHD and compare with results reported recently. In the minimal seesaw (MSS) model, the branching ratio was investigated in the whole valid range 10^{-9}-10^{15} GeV of new neutrino mass scale m_{n_6}. Using the Casas-Ibarra parameterization, this branching ratio enhances with large and increasing m_{n_6}. But the maximal value can reach only order of 10^{-11}. Interesting relations of LFVHD predicted by the MSS and inverse seesaw (ISS) model are discussed. The ratio between two LFVHD branching ratios predicted by the ISS and MSS is simply m^2_{n_6}\mu^{-2}_X, where \mu_X is the small neutrino mass scale in the ISS. The consistence between different calculations is shown precisely from analytical approach.Comment: 4 figures, 26 pages, some analytic formulas and statements are corrected. Main results are unchanged. New references added. Version published in NP

    Question of Peccei-Quinn symmetry and quark masses in the economical 3-3-1 model

    Full text link
    We show that there is an infinite number of U(1) symmetries like Peccei-Quinn symmetry in the 3-3-1 model with minimal scalar sector---two scalar triplets. Moreover, all of them are completely broken due to the model's scalars by themselves (notice that these scalars as known have been often used to break the gauge symmetry and generating the masses for the model's particles). There is no any residual Peccei-Quinn symmetry. Because of the minimal scalar content there are some quarks that are massless at tree-level, but they can get consistent mass contributions at one-loop due to this fact. Interestingly, axions as associated with the mentioned U(1)s breaking (including Majoron due to lepton-charge breaking) are all gauged away because they are also the Goldstone bosons responsible for the gauge symmetry breaking as usual.Comment: 25 pages, 4 figures, revised version, to appear in Physical Review

    Topology in thermodynamics of regular black strings with Kaluza-Klein reduction

    Full text link
    We study the topological defects in the thermodynamics of regular black strings (from a four-dimensional perspective) that is symmetric under the double Wick rotation and constructed in the high-dimensional spacetime with an extra dimension compactified on a circle. We observe that the thermodynamic phases of regular black strings can be topologically classified by the positive and negative winding numbers (at the defects) which correspond to the thermodynamically stable and unstable branches. This topological classification implies a phase transition due to the decay of a thermodynamically unstable regular black string to another which is thermodynamically stable. We confirm these topological properties of the thermodynamics of regular black strings by investigating their free energy, heat capacity, and Ruppeiner scalar curvature of the state space. The Ruppeiner scalar curvature of regular black strings is found to be always negative, implying that the interactions among the microstructures of regular black strings are only attractive.Comment: 21 pages, 10 figure

    Generalized free energy and thermodynamic phases of black holes in the gauged Kaluza-Klein theory

    Full text link
    In the context of the generalized (off-shell) free energy, we explore the phase emergence and corresponding phase transitions of charged dilaton AdS\text{AdS} black holes in the gauged Kaluza-Klein (KK) theory where the KK vector field is gauged such that the fermionic fields are charged under the U(1)KK_{\text{KK}} gauge group. The black hole solutions are asymptotic to the AdSD_D geometry and can be realized as the dimensional reduction of the gauged supergravities on the compact internal manifolds, leading to the restriction as 4≤D≤74\leq D\leq 7. By studying the behavior of the generalized free energy under the change of the ensemble temperature, we determine the thermodynamic phases and the corresponding phase transitions of black holes. This is confirmed by investigating the heat capacity at the constant pressure and the on-shell free energy. In the canonical ensemble, the thermodynamics of black holes can be classified into three different classes as follows: (i) D=4D=4, (ii) D=5D=5, and (iii) D=6,7D=6,7. Whereas, in the grand canonical ensemble, the thermodynamics of black holes is independent of the number of spacetime dimensions and the pressure, but depends on the chemical potential Φ\Phi. The thermodynamic behavior of black holes can be classified into three different classes as follows: (i) Φ1\Phi1, and (iii) Φ=1\Phi=1.Comment: 25 pages, 15 figure

    Design and Implementation of Welding Mobile Robot Using a Proposed Control Scheme Based On Its Developed Dynamic Modeling for Tracking Desired Welding Trajectory

    Full text link
    This paper presents a proposed control scheme that makes the combination of a kinematic controller (KC) and an integral sliding mode controller (ISMC) for a welding mobile robot (WMR) to track a desired welding path. First, a posture tracking error vector is defined and a kinematic controller is designed based on kinematic modeling to make the tracking error vector go to zero asymptotically. Second, a sliding surface vector is defined based on the velocity tracking error vector and its integral term. And then, an integral sliding mode dynamic controller is designed based on developed dynamic modeling to make velocity tracking error vector also go to zero asymptotically. The above controllers are obtained by backstepping method. The stability of system is proved based on the Lyapunov stability theory. To implement the designed tracking controller, a control system is developed based on DSP F28355 and ATmega328. A scheme for measuring the posture tracking error vector using torch sensor is presented. The simulation and experiment results are shown to illustrate effectiveness and the applicability to the welding industry field of the proposed controller

    Kaluza-Klein Structure Associated With Fat Brane

    Full text link
    It is known that the imposition of orbifold boundary conditions on background scalar field can give rise to a non-trivial vacuum expectation value (VEV) along extra dimensions, which in turn generates fat branes and associated unconventional Kaluza-Klein (KK) towers of fermions. We study the structure of these KK towers in the limit of one large extra dimension and show that normalizable (bound) states of massless and massive fermions can exist at both orbifold fixed points. Closer look however indicates that orbifold boundary conditions act to suppress at least half of bound KK modes, while periodic boundary conditions tend to drive the high-lying modes to the conventional structure. By investigating the scattering of fermions on branes, we analytically compute masses and wavefunctions of KK spectra in the presence of these boundary conditions up to one-loop level. Implication of KK-number non-conservation couplings on the Coulomb potential is also examined.Comment: RevTex4, 29 pages, 7 ps figures, new references adde

    A Model of Quark and Lepton Masses I: The Neutrino Sector

    Full text link
    If neutrinos have masses, why are they so tiny? Are these masses of the Dirac type or of the Majorana type? We are already familiar with the mechanism of how to obtain a tiny Majorana neutrino mass by the famous see-saw mechanism. The question is: Can one build a model in which a tiny Dirac neutrino mass arises in a more or less "natural" way? What would be the phenomenological consequences of such a scenario, other than just merely reproducing the neutrino mass patterns for the oscillation data? In this article, a systematic and detailed analysis of a model is presented, with, as key components, the introduction of a family symmetry as well as a new SU(2) symmetry for the right-handed neutrinos. In particular, in addition to the calculations of light neutrino Dirac masses, interesting phenomenological implications of the model will be presented.Comment: 25 (single-spaced) pages, 11 figures, corrected some typos in Table I, added acknowledgement
    • …
    corecore