106 research outputs found

    Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV

    Get PDF
    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low ptp_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.

    Application of time-dependent density functional theory to optical activity

    Get PDF
    As part of a general study of the time-dependent local density approximation (TDLDA), we here report calculations of optical activity of chiral molecules. The theory automatically satisfies sum rules and the Kramers-Kronig relation between circular dichroism and optical rotatory power. We find that the theory describes the measured circular dichroism of the lowest states in methyloxirane with an accuracy of about a factor of two. In the chiral fullerene C_76 the TDLDA provides a consistent description of the optical absorption spectrum, the circular dichroism spectrum, and the optical rotatory power, except for an overall shift of the theoretical spectrum.Comment: 17 pages and 13 PostScript figure

    The influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The formation of adhesions following abdominal surgery is a well known problem. In previous studies we demonstrated the efficacy and safety of intraperitoneally applied phospholipids in order to prevent adhesion formation. This study evaluates the influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions.</p> <p>Methods</p> <p>In 40 Chinchilla rabbits adhesions were induced by median laparotomy, standardized abrasion of the visceral and parietal peritoneum in defined areas of the ventral abdominal wall and the caecum. The animals were randomly divided into four groups. They received either phospholipids 3.0% or normal saline (NaCl 0,9%) (5 ml/kg body weight). In 50% of the rabbits we simulated intraperitoneal bleeding by administration of blood (1,5 ml/kg body weight). The other half served as control group. Ten days following the operation the animals were sacrificed and adhesion formation was assessed by computer aided planimetry and histopathologic examination.</p> <p>Results</p> <p>The median adhesion surface area in the NaCl-group (n = 9) amounted to 68,72 mm<sup>2</sup>, in the NaCl+Blood-group (n = 10) 147,68 mm<sup>2</sup>. In the Phospholipid (PhL)-group (n = 9) the median adhesion surface area measured 9,35 mm<sup>2</sup>, in the PhL+Blood-group (n = 9) 11,95 mm<sup>2</sup>. The phospholipid groups had a significantly smaller adhesion surface area (p < 0.05).</p> <p>Conclusion</p> <p>Again these results confirm the efficacy of phospholipids in the prevention of adhesions in comparison to NaCl (p = 0,04). We also demonstrated the adhesion preventing effect of phospholipids in the presence of intraperitoneal blood.</p

    Bishophite Chlorination

    No full text
    corecore