369 research outputs found

    Magnetocrystalline anisotropy in single-crystal Co-Ni-Al ferromagnetic shape-memory alloy

    Get PDF
    科研費報告書収録論文(課題番号:13555181・基盤研究(B)(2) ・H13~H14/研究代表者:貝沼, 亮介/新しいB2型強磁性形状記憶合金の開発と多機能素子への展開

    Dopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes.

    Get PDF
    Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for the dopaminergic differentiation of hESCs. This chapter describes a simple, reliable, and scalable dopaminergic induction method of hESCs using PA6-derived adipocytes. Coculturing hESCs with PA6-derived adipocytes markedly reduces the variable outcomes among experiments. Moreover, the colony differentiation step of this method can also be used for the dopaminergic induction of mouse embryonic stem cells and NTERA2 cells as well

    Bone marrow mesenchymal stem cells do not enhance intra-synovial tendon healing despite engraftment and homing to niches within the synovium

    Get PDF
    Intra-synovial tendon injuries display poor healing, which often results in reduced functionality and pain. A lack of effective therapeutic options has led to experimental approaches to augment natural tendon repair with autologous mesenchymal stem cells (MSCs) although the effects of the intra-synovial environment on the distribution, engraftment and functionality of implanted MSCs is not known. This study utilised a novel sheep model which, although in an anatomically different location, more accurately mimics the mechanical and synovial environment of the human rotator cuff, to determine the effects of intra-synovial implantation of MSCs

    Human Sclera Maintains Common Characteristics with Cartilage throughout Evolution

    Get PDF
    BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia

    A new XRD method to quantify plate and lath martensites of hardened medium-carbon steel

    Get PDF
    This paper introduces a new technique to separately measure the volume fraction and tetragonal ratio of co-existing lath and plate martensites in ultrahigh strength steel, and to calculate their different carbon contents. First of all, the two martensites are assumed to have body centre tetragonal lattice structures of different tetragonal ratios. X-ray diffraction is then applied to obtain the overlapping (200) diffraction peak, which is subsequently separated as four sub-peaks using a self-made multiple Gaussian peak-fitting method to allow the measurement of the individual lattice parameters c and a. Finally a modified equation is applied to calculate the carbon contents from the obtained tetragonal ratios. The new technique is then applied to investigate the effect of subsequent tempering on the decarbonisation of the as-quenched martensites. Keywords: Gaussian peak-fitting, martensite carbon content, martensite tetragonal ratio, medium-carbon steels, Xray diffractio
    corecore