27,137 research outputs found
A Variational Approach to Bound States in Quantum Field Theory
We consider here in a toy model an approach to bound state problem in a
nonperturbative manner using equal time algebra for the interacting field
operators. Potential is replaced by offshell bosonic quanta inside the bound
state of nonrelativistic particles. The bosonic dressing is determined through
energy minimisation, and mass renormalisation is carried out in a
nonperturbative manner. Since the interaction is through a scalar field, it
does not include spin effects. The model however nicely incorporates an
intuitive picture of hadronic bound states in which the gluon fields dress the
quarks providing the binding between them and also simulate the gluonic content
of hadrons in deep inelastic collisions.Comment: latex, revtex, 22 page
Vacuum structure and effective potential at finite temperature: a variational approach
We compute the effective potential for theory with a squeezed
coherent state type of construct for the ground state. The method essentially
consists in optimising the basis at zero and finite temperatures. The gap
equation becomes identical to resumming the infinite series of daisy and super
daisy graphs while the effective potential includes multiloop effects and
agrees with that obtained through composite operator formalism at finite
temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and
Part. Phys.
Strong CP violation and chiral symmetry breaking in hot and dense quark matter
We investigate chiral symmetry breaking and strong CP violation effects in
the phase diagram of strongly interacting matter. We demonstrate the effect of
strong CP violating terms on the phase structure at finite temperature and
densities in a 3-flavor Nambu-Jona-Lasinio (NJL) model including the
Kobayashi-Maskawa-t'Hooft (KMT) determinant term. This is investigated using an
explicit structure for the ground state in terms of quark-antiquark condensates
for both in the scalar and the pseudoscalar channels. CP restoring transition
with temperature at zero baryon density is found to be a second order
transition at while the same at finite chemical potential and
small temperature turns out to be a first order transition. Within the model,
the tri-critical point turns out to be MeV at
for such a transition.Comment: 10 pages, 12 figure
Interior gap superfluidity in a two-component Fermi gas of atoms
A new superfluid phase in Fermi matter, termed as "interior gap" (IG) or
"breached pair", has been recently predicted by Liu and Wilczek [Phys.Rev.Lett.
{\bf 90}, 047002 (2003)]. This results from pairing between fermions of two
species having essentially different Fermi surfaces. Using a nonperturbative
variational approach, we analyze the features, such as energy gap, momentum
distributions, and elementary excitations associated with the predicted phase.
We discuss possible realization of this phase in two-component Fermi gases in
an optical trap.Comment: 5 page
- …