667 research outputs found
Mutational patterns along different evolution paths of follicular lymphoma
Follicular lymphoma (FL) is an indolent disease, characterized by a median life expectancy of 18-20 years and by intermittent periods of relapse and remission. FL frequently transforms into the more aggressive diffuse large B cell lymphoma (t-FL). In previous studies, the analysis of immunoglobulin heavy chain variable region (IgHV) genes in sequential biopsies from the same patient revealed two different patterns of tumor clonal evolution: direct evolution, through acquisition of additional IgHV mutations over time, or divergent evolution, in which lymphoma clones from serial biopsies independently develop from a less-mutated common progenitor cell (CPC). Our goal in this study was to characterize the somatic hypermutation (SHM) patterns of IgHV genes in sequential FL samples from the same patients, and address the question of whether the mutation mechanisms (SHM targeting, DNA repair or both), or selection forces acting on the tumor clones, were different in FL samples compared to healthy control samples, or in late relapsed/transformed FL samples compared to earlier ones. Our analysis revealed differences in the distribution of mutations from each of the nucleotides when tumor and non-tumor clones were compared, while FL and transformed FL (t-FL) tumor clones displayed similar mutation distributions. Lineage tree measurements suggested that either initial clone affinity or selection thresholds were lower in FL samples compared to controls, but similar between FL and t-FL samples. Finally, we observed that both FL and t-FL tumor clones tend to accumulate larger numbers of potential N-glycosylation sites due to the introduction of new SHM. Taken together, these results suggest that transformation into t-FL, in contrast to initial FL development, is not associated with any major changes in DNA targeting or repair, or the selection threshold of the tumor clone
Quantum kinetic approach to the calculation of the Nernst effect
We show that the strong Nernst effect observed recently in amorphous
superconducting films far above the critical temperature is caused by the
fluctuations of the superconducting order parameter. We employ the quantum
kinetic approach for the derivation of the Nernst coefficient. We present here
the main steps of the calculation and discuss some subtle issues that we
encountered while calculating the Nernst coefficient. In particular, we
demonstrate that in the limit T=0 the contribution of the magnetization ensures
the vanishing of the Nernst signal in accordance with the third law of
thermodynamics. We obtained a striking agreement between our theoretical
calculations and the experimental data in a broad region of temperatures and
magnetic fields.Comment: 24 pages, 13 figure
Nernst effect as a probe of superconducting fluctuations in disordered thin films
In amorphous superconducting thin films of and ,
a finite Nernst coefficient can be detected in a wide range of temperature and
magnetic field. Due to the negligible contribution of normal quasi-particles,
superconducting fluctuations easily dominate the Nernst response in the entire
range of study. In the vicinity of the critical temperature and in the
zero-field limit, the magnitude of the signal is in quantitative agreement with
what is theoretically expected for the Gaussian fluctuations of the
superconducting order parameter. Even at higher temperatures and finite
magnetic field, the Nernst coefficient is set by the size of superconducting
fluctuations. The Nernst coefficient emerges as a direct probe of the ghost
critical field, the normal-state mirror of the upper critical field. Moreover,
upon leaving the normal state with fluctuating Cooper pairs, we show that the
temperature evolution of the Nernst coefficient is different whether the system
enters a vortex solid, a vortex liquid or a phase-fluctuating superconducting
regime.Comment: Submitted to New. J. Phys. for a focus issue on "Superconductors with
Exotic Symmetries
Quantum kinetic approach for studying thermal transport in the presence of electron-electron interactions and disorder
A user friendly scheme based on the quantum kinetic equation is developed for
studying thermal transport phenomena in the presence of interactions and
disorder. We demonstrate that this scheme is suitable for both a systematic
perturbative calculation as well as a general analysis. We believe that we
present an adequate alternative to the Kubo formula, which for the thermal
transport is rather cumbersome.Comment: 30 pages, 16 figure
The complex TIE between macrophages and angiogenesis
Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway
Micro-manufacturing : research, technology outcomes and development issues
Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing
NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth
Mitochondria are emerging as important players in the transformation
process of cells, maintaining the biosynthetic and energetic
capacities of cancer cells and serving as one of the primary sites of
apoptosis and autophagy regulation. Although several avenues of
cancer therapy have focused on mitochondria, progress in developing
mitochondria-targeting anticancer drugs nonetheless has
been slow, owing to the limited number of known mitochondrial
target proteins that link metabolism with autophagy or cell death.
Recent studies have demonstrated that two members of the newly
discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET
(mNT; CISD1), could play such a role in cancer cells. NAF-1 was
shown to be a key player in regulating autophagy, and mNT
was proposed to mediate iron and reactive oxygen homeostasis
in mitochondria. Here we show that the protein levels of NAF-1
and mNT are elevated in human epithelial breast cancer cells, and
that suppressing the level of these proteins using shRNA results in
significantly reduced cell proliferation and tumor growth, decreased
mitochondrial performance, uncontrolled accumulation
of iron and reactive oxygen in mitochondria, and activation of
autophagy. Our findings highlight NEET proteins as promising mitochondrial
targets for cancer therapy
Nonlinear Lattice Waves in Random Potentials
Localization of waves by disorder is a fundamental physical problem
encompassing a diverse spectrum of theoretical, experimental and numerical
studies in the context of metal-insulator transition, quantum Hall effect,
light propagation in photonic crystals, and dynamics of ultra-cold atoms in
optical arrays. Large intensity light can induce nonlinear response, ultracold
atomic gases can be tuned into an interacting regime, which leads again to
nonlinear wave equations on a mean field level. The interplay between disorder
and nonlinearity, their localizing and delocalizing effects is currently an
intriguing and challenging issue in the field. We will discuss recent advances
in the dynamics of nonlinear lattice waves in random potentials. In the absence
of nonlinear terms in the wave equations, Anderson localization is leading to a
halt of wave packet spreading.
Nonlinearity couples localized eigenstates and, potentially, enables
spreading and destruction of Anderson localization due to nonintegrability,
chaos and decoherence. The spreading process is characterized by universal
subdiffusive laws due to nonlinear diffusion. We review extensive computational
studies for one- and two-dimensional systems with tunable nonlinearity power.
We also briefly discuss extensions to other cases where the linear wave
equation features localization: Aubry-Andre localization with quasiperiodic
potentials, Wannier-Stark localization with dc fields, and dynamical
localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
- âŠ