18,013 research outputs found

    The Use of Proof Planning for Cooperative Theorem Proving

    Get PDF
    AbstractWe describebarnacle: a co-operative interface to theclaminductive theorem proving system. For the foreseeable future, there will be theorems which cannot be proved completely automatically, so the ability to allow human intervention is desirable; for this intervention to be productive the problem of orienting the user in the proof attempt must be overcome. There are many semi-automatic theorem provers: we call our style of theorem provingco-operative, in that the skills of both human and automaton are used each to their best advantage, and used together may find a proof where other methods fail. The co-operative nature of thebarnacleinterface is made possible by the proof planning technique underpinningclam. Our claim is that proof planning makes new kinds of user interaction possible.Proof planning is a technique for guiding the search for a proof in automatic theorem proving. Common patterns of reasoning in proofs are identified and represented computationally as proof plans, which can then be used to guide the search for proofs of new conjectures. We have harnessed the explanatory power of proof planning to enable the user to understand where the automatic prover got to and why it is stuck. A user can analyse the failed proof in terms ofclam's specification language, and hence override the prover to force or prevent the application of a tactic, or discover a proof patch. This patch might be to apply further rules or tactics to bridge the gap between the effects of previous tactics and the preconditions needed by a currently inapplicable tactic

    Fuel-conservative guidance system for powered-lift aircraft

    Get PDF
    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described

    Upper-limb exercise in tetraplegia using functional electrical stimulation

    Get PDF
    Cervical spinal cord injury can result in dysfunction in both the lower and upper limbs (tetraplegia), andmay be accompanied by a range of secondary complications. The degree of upper-limb dysfunctiondepends upon the level and completeness of the lesion; in this paper we consider tetraplegics with a neurological level in the range C4-C6. A person with a C5- or C6-level injury will generally retain control of the shoulder and elbow flexor muscles biceps), but will have no control of the hand, wrist or elbow extensors (triceps).With a complete C4 injury voluntary control of the entire arm is lost. Thus, we propose that functional electrical stimulation (FES) of the biceps and triceps muscles may enhance the efficacy of cyclical upper-limb exercise. Alternatives for partial restoration of function include tendon transfer surgery or mechanical orthoses1. Previous FES research for C4-C6 tetraplegics has focused on systems for hand function2,3 and improved working area (i.e. overhead reach)4,5,6,7, but the provision of upper-limb exercise modalities using FES assistance has been neglected. This is important because the lack of effective exercise can lead rapidly to severe cardiopulmonary deconditioning in this population

    Cytokine tuning of intestinal epithelial function

    Get PDF
    The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed

    Use of multiple discrete wall jets for delaying boundary layer separation

    Get PDF
    The effectiveness of a spanwise array of small discrete blowing nozzles in preventing separation of a turbulent boundary layer was investigated experimentally. The spacing, axial location, and momentum flux of the nozzles were varied in a systematic way, and overall performance was measured for each combination. Extensive mean velocity profiles were measured for one selected combination. Overall diffusion achieved before separation was correlated successfully with a momentum flux excess parameter, and in terms of this parameter discrete nozzles, when advantageously placed, were found to perform somewhat better than an optimally placed two-dimensional jet slot

    The B(s)D(s)lνB_{(s)} \to D_{(s)}l\nu Decay with Highly Improved Staggered Quarks and NRQCD

    Full text link
    We report on progress of a lattice QCD calculation of the BDlνB\to Dl\nu and BsDslνB_s\to D_s l\nu semileptonic form factors. We use a relativistic staggered action (HISQ) for light and charm quarks, and an improved non-relativistic (NRQCD) action for bottom, on the second generation MILC ensembles.Comment: Presented at Lattice 2017, the 35th International Symposium on Lattice Field Theory at Granada, Spain (18-24 June 2017

    Fixed-range optimum trajectories for short-haul aircraft

    Get PDF
    An algorithm, based on the energy-state method, is derived for calculating optimum trajectories with a range constraint. The basis of the algorithm is the assumption that optimum trajectories consist of, at most, three segments: an increasing energy segment (climb); a constant energy segment (cruise); and a decreasing energy segment (descent). This assumption allows energy to be used as the independent variable in the increasing and decreasing energy segments, thereby eliminating the integration of a separate adjoint differential equation and simplifying the calculus of variations problem to one requiring only pointwise extremization of algebraic functions. The algorithm is used to compute minimum fuel, minimum time, and minimum direct-operating-cost trajectories, with range as a parameter, for an in-service CTOL aircraft and for an advanced STOL aircraft. For the CTOL aircraft and the minimum-fuel performance function, the optimum controls, consisting of air-speed and engine power setting, are continuous functions of the energy in both climb and descent as well as near the maximum or cruise energy. This is also true for the STOL aircraft except in the descent where at one energy level a nearly constant energy dive segment occurs, yielding a discontinuity in the airspeed at that energy. The reason for this segment appears to be the relatively high fuel flow at idle power of the engines used by this STOL aircraft. Use of a simplified trajectory which eliminates the dive increases the fuel consumption of the total descent trajectory by about 10 percent and the time to fly the descent by about 19 percent compared to the optimum

    Automatic electrical stimulation of abdominal wall muscles increases tidal volume and cough peak flow in tetraplegia

    Get PDF
    <p>Paralysis of the respiratory muscles in people with tetraplegia affects their ability to breathe and contributes to respiratory complications. Surface functional electrical stimulation (FES) of abdominal wall muscles can be used to increase tidal volume (V_{T}) and improve cough peak flow (CPF) in tetraplegic subjects who are able to breathe spontaneously.</p> <p>This study aims to evaluate the feasibility and effectiveness of a novel abdominal FES system which generates stimulation automatically, synchronised with the subjects' voluntary breathing activity. Four subjects with complete tetraplegia (C4-C6), breathing spontaneously, were recruited.</p> <p>The automatic stimulation system ensured that consistent stimulation was achieved. We compared spirometry during unassisted and FES-assisted quiet breathing and coughing, and measured the effect of stimulation on end-tidal CO_2 (EtCO_2) during quiet breathing.</p> <p>The system dependably recognised spontaneous respiratory effort, stimulating appropriately, and was well tolerated by patients. Significant increases in V_T during quiet breathing (range 0.05–0.23 L) and in CPF (range 0.04–0.49 L/s) were observed. Respiratory rate during quiet breathing decreased in all subjects when stimulated, whereas minute ventilation increased by 1.05–2.07 L/min. The changes in EtCO_2 were inconclusive.</p> <p>The automatic stimulation system augmented spontaneous breathing and coughing in tetraplegic patients and may provide a potential means of respiratory support for tetraplegic patients with reduced respiratory capacity.</p&gt

    Sonic boom characteristics of proposed supersonic and hypersonic airplanes

    Get PDF
    Sonic boom characteristics of proposed supersonic and hypersonic aircraf
    corecore