1,332 research outputs found
Cost and price estimate of Brayton and Stirling engines in selected production volumes
The methods used to determine the production costs and required selling price of Brayton and Stirling engines modified for use in solar power conversion units are presented. Each engine part, component and assembly was examined and evaluated to determine the costs of its material and the method of manufacture based on specific annual production volumes. Cost estimates are presented for both the Stirling and Brayton engines in annual production volumes of 1,000, 25,000, 100,000 and 400,000. At annual production volumes above 50,000 units, the costs of both engines are similar, although the Stirling engine costs are somewhat lower. It is concluded that modifications to both the Brayton and Stirling engine designs could reduce the estimated costs
Unconditional security of coherent-state quantum key distribution with strong phase-reference pulse
We prove the unconditional security of a quantum key distribution protocol in
which bit values are encoded in the phase of a weak coherent-state pulse
relative to a strong reference pulse. In contrast to implementations in which a
weak pulse is used as a substitute for a single-photon source, the achievable
key rate is found to decrease only linearly with the transmission of the
channel.Comment: 4 pages, 3 figure
Coin Tossing is Strictly Weaker Than Bit Commitment
We define cryptographic assumptions applicable to two mistrustful parties who
each control two or more separate secure sites between which special relativity
guarantees a time lapse in communication. We show that, under these
assumptions, unconditionally secure coin tossing can be carried out by
exchanges of classical information. We show also, following Mayers, Lo and
Chau, that unconditionally secure bit commitment cannot be carried out by
finitely many exchanges of classical or quantum information. Finally we show
that, under standard cryptographic assumptions, coin tossing is strictly weaker
than bit commitment. That is, no secure classical or quantum bit commitment
protocol can be built from a finite number of invocations of a secure coin
tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let
Unconditional security at a low cost
By simulating four quantum key distribution (QKD) experiments and analyzing
one decoy-state QKD experiment, we compare two data post-processing schemes
based on security against individual attack by L\"{u}tkenhaus, and
unconditional security analysis by Gottesman-Lo-L\"{u}tkenhaus-Preskill. Our
results show that these two schemes yield close performances. Since the Holy
Grail of QKD is its unconditional security, we conclude that one is better off
considering unconditional security, rather than restricting to individual
attacks.Comment: Accepted by International Conference on Quantum Foundation and
Technology: Frontier and Future 2006 (ICQFT'06
Unconditionally secure quantum bit commitment is impossible
The claim of quantum cryptography has always been that it can provide
protocols that are unconditionally secure, that is, for which the security does
not depend on any restriction on the time, space or technology available to the
cheaters. We show that this claim does not hold for any quantum bit commitment
protocol. Since many cryptographic tasks use bit commitment as a basic
primitive, this result implies a severe setback for quantum cryptography. The
model used encompasses all reasonable implementations of quantum bit commitment
protocols in which the participants have not met before, including those that
make use of the theory of special relativity.Comment: 4 pages, revtex. Journal version replacing the version published in
the proceedings of PhysComp96. This is a significantly improved version which
emphasis the generality of the resul
Three-intensity decoy state method for device independent quantum key distribution with basis dependent errors
We study the measurement device independent quantum key distribution (MDIQKD)
in practice with limited resource, when there are only 3 different states in
implementing the decoy-state method and when there are basis dependent coding
errors. We present general formulas for the decoy-state method for two-pulse
sources with 3 different states, which can be applied to the recently proposed
MDIQKD with imperfect single-photon source such as the coherent states or the
heralded states from the parametric down conversion. We point out that the
existing result for secure QKD with source coding errors does not always hold.
We find that very accurate source coding is not necessary. In particular, we
loosen the precision of existing result by several magnitude orders for secure
QKD.Comment: Published version with Eq.(17) corrected. We emphasize that our major
result (Eq.16) for the decoy-state part can be applied to generate a key rate
very close to the ideal case of using infinite different coherent states, as
was numerically demonstrated in Ref.[21]. Published in PRA, 2013, Ja
Unconditionally secure key distillation from multi-photons
In this paper, we prove that the unconditionally secure key can be
surprisingly extracted from {\it multi}-photon emission part in the photon
polarization-based QKD. One example is shown by explicitly proving that one can
indeed generate an unconditionally secure key from Alice's two-photon emission
part in ``Quantum cryptography protocols robust against photon number splitting
attacks for weak laser pulses implementations'' proposed by V. Scarani {\it et
al.,} in Phys. Rev. Lett. {\bf 92}, 057901 (2004), which is called SARG04. This
protocol uses the same four states as in BB84 and differs only in the classical
post-processing protocol. It is, thus, interesting to see how the classical
post-processing of quantum key distribution might qualitatively change its
security. We also show that one can generate an unconditionally secure key from
the single to the four-photon part in a generalized SARG04 that uses six
states. Finally, we also compare the bit error rate threshold of these
protocols with the one in BB84 and the original six-state protocol assuming a
depolarizing channel.Comment: The title has changed again. We considerably improved our
presentation, and furthermore we proposed & analyzed a security of a modified
SARG04 protocol, which uses six state
Effects of detector efficiency mismatch on security of quantum cryptosystems
We suggest a type of attack on quantum cryptosystems that exploits variations
in detector efficiency as a function of a control parameter accessible to an
eavesdropper. With gated single-photon detectors, this control parameter can be
the timing of the incoming pulse. When the eavesdropper sends short pulses
using the appropriate timing so that the two gated detectors in Bob's setup
have different efficiencies, the security of quantum key distribution can be
compromised. Specifically, we show for the Bennett-Brassard 1984 (BB84)
protocol that if the efficiency mismatch between 0 and 1 detectors for some
value of the control parameter gets large enough (roughly 15:1 or larger), Eve
can construct a successful faked-states attack causing a quantum bit error rate
lower than 11%. We also derive a general security bound as a function of the
detector sensitivity mismatch for the BB84 protocol. Experimental data for two
different detectors are presented, and protection measures against this attack
are discussed.Comment: v3: identical to the journal version. However, after publication we
have discovered that Eq. 11 is incorrect: the available bit rate after
privacy amplification is reduced even in the case (QBER)=0 [see Quant. Inf.
Comp. 7, 73 (2007)
Unconditionally Secure Bit Commitment
We describe a new classical bit commitment protocol based on cryptographic
constraints imposed by special relativity. The protocol is unconditionally
secure against classical or quantum attacks. It evades the no-go results of
Mayers, Lo and Chau by requiring from Alice a sequence of communications,
including a post-revelation verification, each of which is guaranteed to be
independent of its predecessor.Comment: Typos corrected. Reference details added. To appear in Phys. Rev.
Let
Is Quantum Bit Commitment Really Possible?
We show that all proposed quantum bit commitment schemes are insecure because
the sender, Alice, can almost always cheat successfully by using an
Einstein-Podolsky-Rosen type of attack and delaying her measurement until she
opens her commitment.Comment: Major revisions to include a more extensive introduction and an
example of bit commitment. Overlap with independent work by Mayers
acknowledged. More recent works by Mayers, by Lo and Chau and by Lo are also
noted. Accepted for publication in Phys. Rev. Let
- …