297 research outputs found

    Anti-phase Modulation of Electron- and Hole-like States in Vortex Core of Bi2Sr2CaCu2Ox Probed by Scanning Tunneling Spectroscopy

    Full text link
    In the vortex core of slightly overdoped Bi2Sr2CaCu2Ox, the electron-like and hole-like states have been found to exhibit spatial modulations in anti-phase with each other along the Cu-O bonding direction. Some kind of one-dimensionality has been observed in the vortex core, and it is more clearly seen in differential conductance maps at lower biases below +-9 mV

    Renormalization Group Method and Reductive Perturbation Method

    Full text link
    It is shown that the renormalization group method does not necessarily eliminate all secular terms in perturbation series to partial differential equations and a functional subspace of renormalizable secular solutions corresponds to a choice of scales of independent variables in the reductive perturbation method.Comment: 5 pages, late

    On the enigmatic X-ray Source V1408 Aql (=4U 1957+11)

    Get PDF
    Models for the characteristically soft X-ray spectrum of the compact X-ray source V1498 Aql (=4U 1957+11) have ranged from optically thick Comptonization to multicolor accretion disk models. We critically examine the X-ray spectrum of V1408 Aql via archival Advanced Satellite for Cosmology and Astrophysics (ASCA) data, archival Roentgensatellit (ROSAT) data, and recent Rossi X-Ray Timing Explorer (RXTE) data. Although we are able to fit a variety of X-ray spectral models to these data, we favor an interpretation of the X-ray spectrum as being due to an accretion disk viewed at large inclination angles. Evidence for this hypothesis includes long term (117 day, 235 day, 352 day) periodicities seen by the RXTE All Sky Monitor (ASM), which we interpret as being due to a warped precessing disk, and a 1 keV feature in the ASCA data, which we interpret as being the blend of L fluorescence features from a disk atmosphere or wind. We also present timing analysis of the RXTE data and find upper limits of 4% for the root mean square (rms) variability between f=0.001-16 Hz. The situation of whether the compact object is a black hole or neutron star is still ambiguous; however, it now seems more likely that an X-ray emitting, warped accretion disk is an important component of this system.Comment: High Frequency Power Spectrum corrected for unflagged `data dropouts' (described in Appendix) and correct upper limits for variability presented. All energy spectra and long term variability sections unchanged. Additional references and acknowledgements added. 13 pages in emulateapj.st

    Electron Positron Capture Rates and the Steady State Equilibrium Condition for Electron-Positron Plasma with Nucleons

    Full text link
    The reaction rates of the beta processes for all particles at arbitrary degeneracy are derived, and an {\it analytic} steady state equilibrium condition μn=μp+2μe\mu_n=\mu_p+2\mu_e which results from the equality of electron and positron capture rates in the hot electron-positron plasma with nucleons is also found, if the matter is transparent to neutrinos. This simple analytic formula is valid only if electrons are nondegenerate or mildly degenerate, which is generally satisfied in the hot electron-positron plasma. Therefore, it can be used to efficiently determine the steady state of the hot matter with plenty of positrons. Based on this analytic condition, given the baryon number density and the temperature, if the nucleons are nondegenerate, only one algebraic equation for determining the electron fraction is obtained, which shows the great advantage of the analytic equilibrium condition.Comment: Accepted for publication in Phys. Rev.

    Exact Solutions for Domain Walls in Coupled Complex Ginzburg - Landau Equations

    Full text link
    The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for the evolution of slowly varying wave packets in nonlinear dissipative media. A front (shock) is a transient layer between a plane-wave state and a zero background. We report exact solutions for domain walls, i.e., pairs of fronts with opposite polarities, in a system of two coupled CGLEs, which describe transient layers between semi-infinite domains occupied by each component in the absence of the other one. For this purpose, a modified Hirota bilinear operator, first proposed by Bekki and Nozaki, is employed. A novel factorization procedure is applied to reduce the intermediate calculations considerably. The ensuing system of equations for the amplitudes and frequencies is solved by means of computer-assisted algebra. Exact solutions for mutually-locked front pairs of opposite polarities, with one or several free parameters, are thus generated. The signs of the cubic gain/loss, linear amplification/attenuation, and velocity of the coupled-front complex can be adjusted in a variety of configurations. Numerical simulations are performed to study the stability properties of such fronts.Comment: Journal of the Physical Society of Japan, in pres

    Thermonuclear Stability of Material Accreting onto a Neutron Star

    Full text link
    We present a global linear stability analysis of nuclear fuel accumulating on the surface of an accreting neutron star and we identify the conditions under which thermonuclear bursts are triggered. The analysis reproduces all the recognized regimes of hydrogen and helium bursts, and in addition shows that at high accretion rates, near the limit of stable burning, there is a regime of ``delayed mixed bursts'' which is distinct from the more usual ``prompt mixed bursts.'' In delayed mixed bursts, a large fraction of the fuel is burned stably before the burst is triggered. Bursts thus have longer recurrence times, but at the same time have somewhat smaller fluences. Therefore, the parameter alpha, which measures the ratio of the energy released via accretion to that generated through nuclear reactions in the burst, is up to an order of magnitude larger than for prompt bursts. This increase in alpha near the threshold of stable burning has been seen in observations. We explore a wide range of mass accretion rates, neutron star radii and core temperatures, and calculate a variety of burst properties. From a preliminary comparison with data, we suggest that bursting neutron stars may have hot cores, with T_{core} >~ 10^{7.5} K, consistent with interior cooling via the modified URCA or similar low-efficiency process, rather than T_{core} ~ 10^7 K, as expected for the direct URCA process. There is also an indication that neutron star radii are somewhat small <~ 10 km. Both of these conclusions need to be confirmed by comparing more careful calculations with better data.Comment: 67 pages, 19 figures, final version to appear in The Astrophysical Journal, vol. 599, no. 1, Dec. 10, 200

    An unusual presentation of adenoid cystic carcinoma of the minor salivary glands with cranial nerve palsy: a case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenoid Cystic Carcinoma (ACC) is a rare tumor entity and comprises about 1% of all malignant tumor of the oral and maxillofacial region. It is slow growing but a highly invasive cancer with a high recurrence rate. Intracranial ACC is even more infrequent and could be primary or secondary occurring either by direct invasion, hematogenous spread, or perineural spread. We report the first case of the 5<sup>th </sup>and 6<sup>th </sup>nerve palsy due to cavernous sinus invasion by adenoid cystic carcinoma.</p> <p>Case presentation</p> <p>A 49-year-old African American female presented to the emergency room complaining of severe right-sided headache, photophobia, dizziness and nausea, with diplopia. The patient had a 14 year history migraine headaches, hypertension, and mild intermittent asthma. Physical examination revealed right lateral rectus muscle palsy with esotropia. There was numbness in all three divisions of the right trigeminal nerve. Motor and sensory examination of extremities was normal. An MRI of the brain/brain stem was obtained which showed a large mass in the clivus extending to involve the nasopharynx, pterygoid plate, sphenoid and right cavernous sinuses.</p> <p>Biopsy showed an ACC tumor with a cribriform pattern of the minor salivary glands. The patient underwent total gross surgical resection and radiation therapy.</p> <p>Conclusion</p> <p>This is a case of ACC of the minor salivary glands with intracranial invasion. The patient had long history of headaches which changed in character during the past year, and symptoms of acute 5<sup>th </sup>and 6<sup>th </sup>cranial nerve involvement. Our unique case demonstrates direct invasion of cavernous sinus and could explain the 5<sup>th </sup>and 6<sup>th </sup>cranial nerve involvement as histopathology revealed no perineural invasion.</p

    Scanning tunneling spectroscopy of high-temperature superconductors

    Full text link
    Tunneling spectroscopy played a central role in the experimental verification of the microscopic theory of superconductivity in the classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the main difficulties. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. We first recall the crucial efforts to gain control over the technique and to obtain reproducible results. We then discuss how the STM/STS technique has contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors: the unusual large gap values and the absence of scaling with the critical temperature; the pseudogap and its relation to superconductivity; the unprecedented small size of the vortex cores and its influence on vortex matter; the unexpected electronic properties of the vortex cores; the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure
    corecore