286 research outputs found
Group galaxy number density profiles far out: is the 'one-halo' term NFW out to virial radii?
While the density profiles (DPs) of CDM haloes obey the NFW law out
to roughly one virial radius, , the structure of their outer parts
is still poorly understood, since the 1-halo term describing the halo itself is
dominated by the 2-halo term representing the other haloes picked up. Using a
semi-analytical model, we measure the real-space `1-halo' number DP of groups
out to by assigning each galaxy to its nearest group with
mass above , in units of the group . If is
small (large), the outer DP of groups falls rapidly (slowly). We find that
there is an optimal for which the stacked DP resembles the NFW
model to dex accuracy out to . We find similar
long-range NFW surface DPs (out to ) in the SDSS
observations using a galaxy assignment scheme that combines the non-linear
virialized regions of groups with their linear outer parts. The optimal scales as the minimum mass of the groups that are stacked to the power
. Our results suggest that the NFW model does not solely originate
from violent relaxation. Moreover, populating haloes with galaxies using HOD
models must proceed out to larger radii than usually done.Comment: 5 pages, 4 figures. Accepted for publication in MNRAS Letters. Final
version including discussion on the backsplash radiu
Why does the Jeans Swindle work?
When measuring the mass profile of any given cosmological structure through
internal kinematics, the distant background density is always ignored. This
trick is often refereed to as the "Jeans Swindle". Without this trick a
divergent term from the background density renders the mass profile undefined,
however, this trick has no formal justification. We show that when one includes
the expansion of the Universe in the Jeans equation, a term appears which
exactly cancels the divergent term from the background. We thereby establish a
formal justification for using the Jeans Swindle.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter
MOND and Cosmology
I review various ideas on MOND cosmology and structure formation beginning
with non-relativistic models in analogy with Newtonian cosmology. I discuss
relativistic MOND cosmology in the context of Bekenstein's theory and propose
an alternative biscalar effective theory of MOND in which the acceleration
parameter is identified with the cosmic time derivative of a matter coupling
scalar field. Cosmic CDM appears in this theory as scalar field oscillations of
the auxiliary "coupling strength" field.Comment: 8 pages, LaTeX, 2 figures, to appear in proceedings of IAP05 in
Paris: Mass Profiles and Shapes of Cosmological Structures, G. Mamon, F.
Combes, C. Deffayet and B. Fort (eds), (EDP-Sciences 2005
The role of tidal interactions in driving galaxy evolution
We carry out a statistical analysis of galaxy pairs selected from chemical
hydrodynamical simulations with the aim at assessing the capability of
hierarchical scenarios to reproduce recent observational results for galaxies
in pairs. Particularly, we analyse the effects of mergers and interactions on
the star formation (SF) activity, the global mean chemical properties and the
colour distribution of interacting galaxies. We also assess the effects of
spurious pairs.Comment: to appear in "Groups of galaxies in the nearby Universe" ESO
Workshop, (Dec 2005) Santiago, Chil
The Association of Compact Groups of Galaxies with Large-scale Structures
We use various samples of compact groups (CGs) to examine the types of
association CGs have with rich and poor clusters of galaxies at low (z~0.04)
and intermediate (z~0.1) redshifts. We find that ~10-20 % of CGs are associated
with rich clusters and a much larger fraction with poorer clusters or loose
groups. Considering the incompleteness of catalogs of poorer systems at
intermediate redshift, our result is consistent with all CGs at intermediate
redshift being associated with larger-scale systems. The richness of the
clusters associated with CGs significantly increases from z~0.04 to z~0.1,
while their Bautz-Morgan type changes from early to late type for the same
range in z. Neither trend is compatible with a selection effect in the cluster
catalogs used. We find earlier morphological types of galaxies to be more
frequent in CGs associated with larger-scale structures, compared to those in
CGs not associated to such structures. We consider this as new evidence that
CGs are part of the large-scale structure formation process and that they may
play an important role in the evolution of galaxies in these structures.Comment: 5 pages, no figures, Proc. ESO Workshop "Groups of galaxies in the
nearby Universe", Santiago, Chile, 5-9 Dec. 2005, ESO Astrophysics Symposia,
eds. I. Saviane, V. Ivanov & J. Borissova, Springer-Verlag; very minor
revision of text on 15 Mar 2006, added one referenc
- …