26 research outputs found

    Correction: PAIS: paracetamol (acetaminophen) in stroke; protocol for a randomized, double blind clinical trial. [ISCRTN74418480]

    Get PDF
    BACKGROUND: The Paracetamol (Acetaminophen) In Stroke (PAIS) study is a phase III multicenter, double blind, randomized, placebo-controlled clinical trial of high-dose acetaminophen in patients with acute stroke. The trial compares treatment with a daily dose of 6 g acetaminophen, started within 12 hours after the onset of symptoms, with matched placebo. The purpose of this study is to assess whether treatment with acetaminophen for 3 days will result in improved functional outcome through a modest reduction in body temperature and prevention of fever.The previously planned statistical analysis based on a dichotomization of the scores on the modified Rankin Scale (mRS) may not make the most efficient use of the available baseline information. Therefore, the planned primary analysis of the PAIS study has been changed from fixed dichotomization of the mRS to a sliding dichotomy analysis. METHODS: Instead of taking a single definition of good outcome for all patients, the definition is tailored to each individual patient's baseline prognosis on entry into the trial. CONCLUSION: The protocol change was initiated becau

    Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression

    Get PDF
    Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2x)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted

    An early rise in body temperature is related to unfavorable outcome after stroke: Data from the PAIS study

    Get PDF
    Subfebrile temperature or fever is present in about a third of patients on the first day after stroke onset and is associated with poor outcome. However, the temporal profile of this association is not well established. We aimed to assess the relationship between body temperature on admission as well as the change in body temperature from admission to 24 h thereafter and functional outcome and death. We analyzed data of 1,332 patients admitted within 12 h of stroke onset. The relation between body temperature on admission or the change in body temperature from admission to 24 h thereafter (adjusted for body temperature on admission) on the one hand and unfavorable outcome (death, or a modified Rankin Scale score >2) at 3 months on the other were expressed as odds ratio per 1.0°C increase in body temperature. Adjustments for potential confounders were made with a multiple logistic regression model. No relation was found between admission body temperature and poor outcome (aOR 1.06; 95% CI 0.85-1.32) and death (aOR 1.23; 95% CI 0.95-1.60). In contrast, increased body temperature in the first 24 h after stroke onset was associated with poor outcome (aOR 1.30; 95% CI 1.05-1.63) and death (aOR 1.51; 95% CI 1.15-1.98). An early rise in body temperature rather than high body temperature on admission is a risk factor for unfavorable outcome in patients with acute stroke

    PISA. The effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute stroke: Protocol for a phase II double-blind randomised placebo-controlled trial [ISRCTN98608690]

    Get PDF
    BACKGROUND: During the first days after stroke, one to two fifths of the patients develop fever or subfebrile temperatures. Body temperature is a strong prognostic factor after stroke. Pharmacological reduction of temperature in patients with acute ischaemic stroke may improve their functional outcome. Previously, we studied the effect of high dose (6 g daily) and low dose (3 g daily) paracetamol (acetaminophen) in a randomised placebo-controlled trial of 75 patients with acute ischemic stroke. In the high-dose paracetamol group, mean body temperature at 12 and 24 hours after start of treatment was 0.4°C lower than in the placebo group. The effect of ibuprofen, another potent antipyretic drug, on body-core temperature in normothermic patients has not been studied. AIM: The aim of the present trial is to study the effects of high-dose paracetamol and ibuprofen on body temperature in patients with acute ischaemic stroke, and to study the safety of these treatments. DESIGN: Seventy-five (3 × 25) patients with acute ischaemic stroke confined to the anterior circulation will be randomised to treatment with either: 400 mg ibuprofen, 1000 mg acetaminophen, or with placebo 6 times daily during 5 days. Body-temperatures will be measured with a rectal electronic thermometer at the start of treatment and after 24 hours. An infrared tympanic thermometer will be used to monitor body temperature at 2-hour intervals during the first 24 hours and at 12-hour intervals thereafter. The primary outcome measure will be rectal temperature at 24 hours after the start of treatment. The study results will be analysed on an intent-to-treat basis, but an on-treatment analysis will also be performed. No formal interim analysis will be carried out

    PAIS: paracetamol (acetaminophen) in stroke; protocol for a randomized, double blind clinical trial. [ISCRTN 74418480]

    Get PDF
    BACKGROUND: In patients with acute stroke, increased body temperature is associated with large lesion volumes, high case fatality, and poor functional outcome. A 1°C increase in body temperature may double the odds of poor outcome. Two randomized double-blind clinical trials in patients with acute ischemic stroke have shown that treatment with a daily dose of 6 g acetaminophen (paracetamol) results in a small but rapid and potentially worthwhile reduction of 0.3°C (95% CI: 0.1–0.5) in body temperature. We set out to test the hypothesis that early antipyretic therapy reduces the risk of death or dependency in patients with acute stroke, even if they are normothermic. METHODS/DESIGN: Paracetamol (Acetaminophen) In Stroke (PAIS) is a randomized, double-blind clinical trial, comparing high-dose acetaminophen with placebo in 2500 patients. Inclusion criteria are a clinical diagnosis of hemorrhagic or ischemic stroke and the possibility to start treatment within 12 hours from onset of symptoms. The study will have a power of 86% to detect an absolute difference of 6% in the risk of death or dependency at three months, and a power of 72% to detect an absolute difference of 5%, at a 5% significance level. DISCUSSION: This is a simple trial, with a drug that only has a small effect on body temperature in normothermic patients. However, when lowering body temperature with acetaminophen does have the expected effectiveness, 20 patients will have to be treated to prevent dependency or death in one

    Effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690]

    No full text
    Abstract Background Body temperature is a strong predictor of outcome in acute stroke. In a previous randomized trial we observed that treatment with high-dose acetaminophen (paracetamol) led to a reduction of body temperature in patients with acute ischemic stroke, even when they had no fever. The purpose of the present trial was to study whether this effect of acetaminophen could be reproduced, and whether ibuprofen would have a similar, or even stronger effect. Methods Seventy-five patients with acute ischemic stroke confined to the anterior circulation were randomized to treatment with either 1000 mg acetaminophen, 400 mg ibuprofen, or placebo, given 6 times daily during 5 days. Treatment was started within 24 hours from the onset of symptoms. Body temperatures were measured at 2-hour intervals during the first 24 hours, and at 6-hour intervals thereafter. Results No difference in body temperature at 24 hours was observed between the three treatment groups. However, treatment with high-dose acetaminophen resulted in a 0.3°C larger reduction in body temperature from baseline than placebo treatment (95% CI: 0.0 to 0.6 °C). Acetaminophen had no significant effect on body temperature during the subsequent four days compared to placebo, and ibuprofen had no statistically significant effect on body temperature during the entire study period. Conclusions Treatment with a daily dose of 6000 mg acetaminophen results in a small, but potentially worthwhile decrease in body temperature after acute ischemic stroke, even in normothermic and subfebrile patients. Further large randomized clinical trials are needed to study whether early reduction of body temperature leads to improved outcome.</p
    corecore