48,276 research outputs found
An analysis of turbulent diffusion flame in axisymmetric jet
The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed
Entanglement scaling in critical two-dimensional fermionic and bosonic systems
We relate the reduced density matrices of quadratic bosonic and fermionic
models to their Green's function matrices in a unified way and calculate the
scaling of bipartite entanglement of finite systems in an infinite universe
exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are
identified: generically, we find a logarithmic correction to the area law with
a prefactor dependence on the chemical potential that confirms earlier
predictions based on the Widom conjecture. If, however, the Fermi surface of
the critical system is zero-dimensional, we find an area law with a
sublogarithmic correction. For a critical bosonic 2D array of coupled
oscillators at T=0, our results show that entanglement follows the area law
without corrections.Comment: 4 pages, 4 figure
A decentralized motion coordination strategy for dynamic target tracking
This paper presents a decentralized motion planning
algorithm for the distributed sensing of a noisy dynamical
process by multiple cooperating mobile sensor agents. This
problem is motivated by localization and tracking tasks of
dynamic targets. Our gradient-descent method is based on a
cost function that measures the overall quality of sensing. We
also investigate the role of imperfect communication between
sensor agents in this framework, and examine the trade-offs in
performance between sensing and communication. Simulations
illustrate the basic characteristics of the algorithms
Analytical and experimental study of two concentric cylinders coupled by a fluid gap
From a structural point of view a liquid coolant type nuclear reactor consists of a heavy steel vessel containing the core and related mechanical components and filled with a hot fluid. This vessel is protected from the severe environment of the core by a shielding structure, the thermal liner, which is usually a relatively thin steel cylinder concentric with the reactor vessel and separated from it by a gap filled with the coolant fluid. This arrangement leads to a potential vibration problem if the fundamental frequency, or one of the higher natural vibration frequencies, of this liner system is close to the frequency of some vibration source present in the reactor vessel. The shell rigidly clamped at its base and free at the top was investigated since it is a better description of the conditions encountered in typical reactor designs
Designing arrays of Josephson junctions for specific static responses
We consider the inverse problem of designing an array of superconducting
Josephson junctions that has a given maximum static current pattern as function
of the applied magnetic field. Such devices are used for magnetometry and as
Terahertz oscillators. The model is a 2D semilinear elliptic operator with
Neuman boundary conditions so the direct problem is difficult to solve because
of the multiplicity of solutions. For an array of small junctions in a passive
region, the model can be reduced to a 1D linear partial differential equation
with Dirac distribution sine nonlinearities. For small junctions and a
symmetric device, the maximum current is the absolute value of a cosine Fourier
series whose coefficients (resp. frequencies) are proportional to the areas
(resp. the positions) of the junctions. The inverse problem is solved by
inverse cosine Fourier transform after choosing the area of the central
junction. We show several examples using combinations of simple three junction
circuits. These new devices could then be tailored to meet specific
applications.Comment: The article was submitted to Inverse Problem
Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method
Using the Fock-Schwinger proper time method, we calculate the induced
Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum
electrodynamics with a term. Our
result to all orders in coincides with a recent linear-in- calculation
by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by
Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev.
Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with
the nonperturbative-in- propagator.Comment: 11 pages, no figur
- …