21,011 research outputs found

    On the heterogeneous character of water's amorphous polymorphism

    Get PDF
    In this letter we report {\it in situ} small--angle neutron scattering results on the high--density (HDA) and low-density amorphous (LDA) ice structures and on intermediate structures as found during the temperature induced transformation of HDA into LDA. We show that the small--angle signal is characterised by two QQ regimes featuring different properties (QQ is the modulus of the scattering vector defined as Q=4πsin(Θ)/λiQ = 4\pi\sin{(\Theta)}/\lambda_{\rm i} with Θ\Theta being half the scattering angle and λi\lambda_{\rm i} the incident neutron wavelength). The very low--QQ regime (<5×102< 5\times 10^{-2} \AA 1^{-1}) is dominated by a Porod--limit scattering. Its intensity reduces in the course of the HDA to LDA transformation following a kinetics reminiscent of that observed in wide--angle diffraction experiments. The small--angle neutron scattering formfactor in the intermediate regime of 5×102<Q<0.55 \times 10^{-2} < Q < 0.5 \AA1^{-1} HDA and LDA features a rather flat plateau. However, the HDA signal shows an ascending intensity towards smaller QQ marking this amorphous structure as heterogeneous. When following the HDA to LDA transition the formfactor shows a pronounced transient excess in intensity marking all intermediate structures as strongly heterogeneous on a length scale of some nano--meters

    Agenda for Change: views and experiences from estates and facilities staff

    Get PDF
    Purpose – Agenda for Change is the biggest reform of staff pay in the UK National Health Service NHS) since it began in 1948. As well as introducing a standardised pay structure; it also aims to improve recruitment, retention and staff morale. The aim of this study is to look in-depth at the experiences and opinions of a range of estates and facilities staff surrounding Agenda for Change during the implementation period. Design/methodology/approach – Focus groups were used as the primary method of data collection in an attempt to tap into the views and opinions of staff working at operational positions in a wide range of trusts. Findings – One of the most important and common themes, which reoccurred throughout the focus groups, was the view that the Agenda for Change framework was designed around the needs of nursing staff. Therefore, the framework did not adequately cater for the needs of estates and facilities staff. Specific concerns related to this included; the role or contribution of estates and facilities staff during patient care was not fairly reflected; trade qualifications were not recognised, particularly in comparison to academic qualifications; members of the job matching panels did not have the appropriate knowledge to make decisions surrounding estates and facilities jobs; nurses were more likely to make progress through the bands than estates and facilities staff.</p

    Species Abundance Patterns in Complex Evolutionary Dynamics

    Full text link
    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Geometrical effects on energy transfer in disordered open quantum systems

    Get PDF
    We explore various design principles for efficient excitation energy transport in complex quantum systems. We investigate energy transfer efficiency in randomly disordered geometries consisting of up to 20 chromophores to explore spatial and spectral properties of small natural/artificial Light-Harvesting Complexes (LHC). We find significant statistical correlations among highly efficient random structures with respect to ground state properties, excitonic energy gaps, multichromophoric spatial connectivity, and path strengths. These correlations can even exist beyond the optimal regime of environment-assisted quantum transport. For random configurations embedded in spatial dimensions of 30 A and 50 A, we observe that the transport efficiency saturates to its maximum value if the systems contain 7 and 14 chromophores respectively. Remarkably, these optimum values coincide with the number of chlorophylls in (Fenna-Matthews-Olson) FMO protein complex and LHC II monomers, respectively, suggesting a potential natural optimization with respect to chromophoric density.Comment: 11 pages, 10 figures. Expanded from the former appendix to arXiv:1104.481

    Mean field and pairing properties in the crust of neutron stars

    Full text link
    Properties of the matter in the inner crust of a neutron star are investigated in a Hartree-Fock plus BCS approximation employing schematic effective forces of the type of the Skyrme forces. Special attention is paid to differences between a homogenous and inhomogeneous description of the matter distribution. For that purpose self-consistent Hartree Fock calculations are performed in a spherical Wigner-Seitz cell. The results are compared to predictions of corresponding Thomas Fermi calculations. The influence of the shell structure on the formation of pairing correlations in inhomogeneous matter are discussed.Comment: 11 pages, 9 figure

    Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex

    Full text link
    We investigate multipartite states in the Fenna-Matthews-Olson (FMO) pigment-protein complex of the green sulfur bacteria using a Lorentzian spectral density of the phonon reservoir fitted with typical parameter estimates of the species, P. aestuarii. The evolution of the entanglement measure of the excitonic W qubit states is evaluated in the picosecond time range, showing increased revivals in the non-Markovian regime. Similar trends are observed in the evolution dynamics of the Meyer-Wallach measure of the N-exciton multipartite state, with results showing that multipartite entanglement can last from 0.5 to 1 ps, between the Bchls of the FMO complex. The teleportation and quantum information splitting fidelities associated with the GHZ and W_A resource states of the excitonic qubit channels of the FMO complex show that revivals in fidelities increase with the degree of non-Markovian strength of the decoherent environment. Results indicate that quantum information processing tasks involving teleportation followed by the decodification process involving W_A states of the FMO complex, may play a critical role during coherent oscillations at physiological temperatures.Comment: 16 pages, new figs, typo

    Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    Full text link
    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.Comment: 6 pages, 1 figur

    The Clumping Transition in Niche Competition: a Robust Critical Phenomenon

    Full text link
    We show analytically and numerically that the appearance of lumps and gaps in the distribution of n competing species along a niche axis is a robust phenomenon whenever the finiteness of the niche space is taken into account. In this case depending if the niche width of the species σ\sigma is above or below a threshold σc\sigma_c, which for large n coincides with 2/n, there are two different regimes. For σ>sigmac\sigma > sigma_c the lumpy pattern emerges directly from the dominant eigenvector of the competition matrix because its corresponding eigenvalue becomes negative. For σ</sigmac\sigma </- sigma_c the lumpy pattern disappears. Furthermore, this clumping transition exhibits critical slowing down as σ\sigma is approached from above. We also find that the number of lumps of species vs. σ\sigma displays a stair-step structure. The positions of these steps are distributed according to a power-law. It is thus straightforward to predict the number of groups that can be packed along a niche axis and it coincides with field measurements for a wide range of the model parameters.Comment: 16 pages, 7 figures; http://iopscience.iop.org/1742-5468/2010/05/P0500

    Characteristics of Vehicular Traffic Flow at a Roundabout

    Full text link
    We construct a stochastic cellular automata model for the description of vehicular traffic at a roundabout designed at the intersection of two perpendicular streets. The vehicular traffic is controlled by a self-organized scheme in which traffic lights are absent. This controlling method incorporates a yield-at-entry strategy for the approaching vehicles to the circulating traffic flow in the roundabout. Vehicular dynamics is simulated within the framework of the probabilistic cellular automata and the delay experienced by the traffic at each individual street is evaluated for specified time intervals. We discuss the impact of the geometrical properties of the roundabout on the total delay. We compare our results with traffic-light signalisation schemes, and obtain the critical traffic volume over which the intersection is optimally controlled through traffic light signalisation schemes.Comment: 10 pages, 17 eps figures. arXiv admin note: text overlap with arXiv:cond-mat/040107
    corecore