54,658 research outputs found

    Inverse Design of Perfectly Transmitting Eigenchannels in Scattering Media

    Get PDF
    Light-matter interactions inside turbid medium can be controlled by tailoring the spatial distribution of energy density throughout the system. Wavefront shaping allows selective coupling of incident light to different transmission eigenchannels, producing dramatically different spatial intensity profiles. In contrast to the density of transmission eigenvalues that is dictated by the universal bimodal distribution, the spatial structures of the eigenchannels are not universal and depend on the confinement geometry of the system. Here, we develop and verify a model for the transmission eigenchannel with the corresponding eigenvalue close to unity. By projecting the original problem of two-dimensional diffusion in a homogeneous scattering medium onto a one-dimensional inhomogeneous diffusion, we obtain an analytical expression relating the intensity profile to the shape of the confining waveguide. Inverting this relationship enables the inverse design of the waveguide shape to achieve the desired energy distribution for the perfectly transmitting eigenchannel. Our approach also allows to predict the intensity profile of such channel in a disordered slab with open boundaries, pointing to the possibility of controllable delivery of light to different depths with local illumination.Comment: 9 pages, 6 figure

    Mode Repulsion and Mode Coupling in Random Lasers

    Full text link
    We studied experimentally and theoretically the interaction of lasing modes in random media. In a homogeneously broadened gain medium, cross gain saturation leads to spatial repulsion of lasing modes. In an inhomogeneously broadened gain medium, mode repulsion occurs in the spectral domain. Some lasing modes are coupled through photon hopping or electron absorption and reemission. Under pulsed pumping, weak coupling of two modes leads to synchronization of their lasing action. Strong coupling of two lasing modes results in anti-phased oscillations of their intensities.Comment: 13 pages, 4 figure

    Influence of Spatial Correlations on the Lasing Threshold of Random Lasers

    Full text link
    The lasing threshold of a random laser is computed numerically from a generic model. It is shown that spatial correlations of the disorder in the medium (i.e., dielectric constant) lead to an increase of the decay rates of the eigenmodes and of the lasing threshold. This is in conflict with predictions that such correlations should lower the threshold. While all results are derived for photonic systems, the computed decay rate distributions also apply to electronic systems

    Ti-rich and Cu-poor grain-boundary layers of CaCu3_3Ti4_4O12_{12} detected by x-ray photoelectron spectroscopy

    Get PDF
    Cleaved and polished surfaces of CaCu3_3Ti4_4O12_{12} ceramics have been investigated by x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX), respectively. While EDX technique shows the identical CaCu3_3Ti4_4O12_{12} stoichiometry for the two surfaces, XPS indicates that the cleaved surface with grain-boundary layers is remarkably Ti-rich and Cu-poor. The core-level spectrum of Cu 2pp unambiguously shows the existence of monovalent copper only for the cleaved surface. Possible grain-boundary structure and its formation are discussed.Comment: 8 pages, 3 figure

    Control of coherent backscattering by breaking optical reciprocity

    Full text link
    Reciprocity is a universal principle that has a profound impact on many areas of physics. A fundamental phenomenon in condensed-matter physics, optical physics and acoustics, arising from reciprocity, is the constructive interference of quantum or classical waves which propagate along time-reversed paths in disordered media, leading to, for example, weak localization and metal-insulator transition. Previous studies have shown that such coherent effects are suppressed when reciprocity is broken. Here we show that by breaking reciprocity in a controlled manner, we can tune, rather than simply suppress, these phenomena. In particular, we manipulate coherent backscattering of light, also known as weak localization. By utilizing a non-reciprocal magneto-optical effect, we control the interference between time-reversed paths inside a multimode fiber with strong mode mixing, and realize a continuous transition from the well-known peak to a dip in the backscattered intensity. Our results may open new possibilities for coherent control of classical and quantum waves in complex systemsComment: Comments are welcom

    Anisotropic softening of magnetic excitations in lightly electron doped Sr2_2IrO4_4

    Get PDF
    The magnetic excitations in electron doped (Sr1x_{1-x}Lax_x)2_2IrO4_4 with x=0.03x = 0.03 were measured using resonant inelastic X-ray scattering at the Ir L3L_3-edge. Although much broadened, well defined dispersive magnetic excitations were observed. Comparing with the magnetic dispersion from the parent compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the anti-nodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron doped Sr1x_{1-x}Lax_x)2_2IrO4_4 with close analogies to the hole doped cuprates, further motivating the search for high temperature superconductivity in this system
    corecore