2,916 research outputs found

    Dynamics of false vacuum bubbles with nonminimal coupling

    Full text link
    We study the dynamics of false vacuum bubbles. A nonminimally coupled scalar field gives rise to the effect of negative tension. The mass of a false vacuum bubble from outside observer's point of view can be positive, zero, or negative. The interior false vacuum has de Sitter geometry, while the exterior true vacuum background can have geometry depending on the vacuum energy. We show that there exist expanding false vacuum bubbles without the initial singularity in the past.Comment: 17 pages, 13 figure

    Lie algebra cohomology and group structure of gauge theories

    Get PDF
    We explicitly construct the adjoint operator of coboundary operator and obtain the Hodge decomposition theorem and the Poincar\'e duality for the Lie algebra cohomology of the infinite-dimensional gauge transformation group. We show that the adjoint of the coboundary operator can be identified with the BRST adjoint generator QQ^{\dagger} for the Lie algebra cohomology induced by BRST generator QQ. We also point out an interesting duality relation - Poincar\'e duality - with respect to gauge anomalies and Wess-Zumino-Witten topological terms. We consider the consistent embedding of the BRST adjoint generator QQ^{\dagger} into the relativistic phase space and identify the noncovariant symmetry recently discovered in QED with the BRST adjoint N\"other charge QQ^{\dagger}.Comment: 24 pages, RevTex, Revised version submitted to J. Math. Phy

    Oscillating instanton solutions in curved space

    Full text link
    We investigate oscillating instanton solutions of a self-gravitating scalar field between degenerate vacua. We show that there exist O(4)-symmetric oscillating solutions in a de Sitter background. The geometry of this solution is finite and preserves the Z2Z_{2} symmetry. The nontrivial solution corresponding to tunneling is possible only if the effect of gravity is taken into account. We present numerical solutions of this instanton, including the phase diagram of solutions in terms of the parameters of the present work and the variation of energy densities. Our solutions can be interpreted as solutions describing an instanton-induced domain wall or braneworld-like object rather than a kink-induced domain wall or braneworld. The oscillating instanton solutions have a thick wall and the solutions can be interpreted as a mechanism providing nucleation of the thick wall for topological inflation. We remark that Z2Z_{2} invariant solutions also exist in a flat and anti-de Sitter background, though the physical significance is not clear.Comment: 25 pages, 11 figues. Some typos corrected, references added, and Ch3. modified according to referee's comment

    Instanton solutions mediating tunneling between the degenerate vacua in curved space

    Full text link
    We investigate the instanton solution between the degenerate vacua in curved space. We show that there exist O(4)O(4)-symmetric solutions not only in de Sitter but also in both flat and anti-de Sitter space. The geometry of the new type of solutions is finite and preserves the Z2Z_2 symmetry. The nontrivial solution corresponding to the tunneling is possible only if gravity is taken into account. The numerical solutions as well as the analytic computations using the thin-wall approximation are presented. We expect that these solutions do not have any negative mode as in the instanton solution.Comment: Some typos are corrected and references are added with respect to the published version. 17pages, 11fi

    Cosmic String Spacetime in Dilaton Gravity and Flat Rotation Curves

    Full text link
    In dilaton gravity theories, we consider a string-like topological defect formed during U(1) gauge symmetry-breaking phase transition in the early Universe, and far from the cosmic string we have vacuum solutions of the generalized Einstein equation. We discuss how they can be related to the flatness of galactic rotation curves.Comment: 9 pages, RevTeX4 fil

    Oscillating instanton solutions and classification of vacuum bubbles

    Get PDF
    We discuss the nucleation process of an oscillating instanton solution and a vacuum bubble in this presentation. We show that there exist the O(4)- symmetric oscillating instanton solution and the vacuum bubbles with arbitrary energies. The nontrivial solution corresponding to the tunneling is possible only when gravity is switched on. The geometry of these solutions is finite and preserves the Z2 symmetry. The action for the solutions are integrable both in de Sitter and in flat background. The instatons do not have any singularity. Our solutions can be interpreted as solutions describing an instanton-induced domain wall or braneworldlike object rather than a kink-induced domain wall or braneworld. The oscillating instanton solutions have a thick wall and the solutions can be interpreted as a mechanism providing nucleation of the thick wall for topological inflation

    The false vacuum bubble nucleation due to a nonminimally coupled scalar field

    Full text link
    We study the possibility of forming the false vacuum bubble nucleated within the true vacuum background via the true-to-false vacuum phase transition in curved spacetime. We consider a semiclassical Euclidean bubble in the Einstein theory of gravity with a nonminimally coupled scalar field. In this paper we present the numerical computations as well as the approximate analytical computations. We mention the evolution of the false vacuum bubble after nucleation.Comment: 23 pages, 12 figures, References added, minor correctio
    corecore