25 research outputs found
Enquête séroépidémiologique de la rhinopneumonie des équidés en Tunisie
Une enquête séroépidémiologique, réalisée sur 789 équidés (400 élevés au Nord-Est de la Tunisie, 389 dans la région du Sahel et du Centre), a permis de détecter, par le test de fixation du complément, des anticorps spécifiques contre le virus de la rhinopneumonie équine. Les résultats ont montré que 15 équidés (1,9 %) étaient séropositifs, avec des taux variables d'anticorps fixant le complément. Ces résultats sont discutés en relation avec ceux obtenus par d'autres auteurs en Tunisie et dans les pays voisins
Cranioencephalic functional lymphoid units in glioblastoma
The ecosystem of brain tumors is considered immunosuppressed, but our current knowledge may be incomplete. Here we analyzed clinical cell and tissue specimens derived from patients presenting with glioblastoma or nonmalignant intracranial disease to report that the cranial bone (CB) marrow, in juxtaposition to treatment-naive glioblastoma tumors, harbors active lymphoid populations at the time of initial diagnosis. Clinical and anatomical imaging, single-cell molecular and immune cell profiling and quantification of tumor reactivity identified CD8+ T cell clonotypes in the CB that were also found in the tumor. These were characterized by acute and durable antitumor response rooted in the entire T cell developmental spectrum. In contrast to distal bone marrow, the CB niche proximal to the tumor showed increased frequencies of tumor-reactive CD8+ effector types expressing the lymphoid egress marker S1PR1. In line with this, cranial enhancement of CXCR4 radiolabel may serve as a surrogate marker indicating focal association with improved progression-free survival. The data of this study advocate preservation and further exploitation of these cranioencephalic units for the clinical care of glioblastoma
Cohort Profile: Burden of Obstructive Lung Disease (BOLD) study
The Burden of Obstructive Lung Disease (BOLD) study was established to assess the prevalence of chronic airflow obstruction, a key characteristic of chronic obstructive pulmonary disease, and its risk factors in adults (≥40 years) from general populations across the world.
The baseline study was conducted between 2003 and 2016, in 41 sites across Africa, Asia, Europe, North America, the Caribbean and Oceania, and collected high-quality pre- and post-bronchodilator spirometry from 28 828 participants.
The follow-up study was conducted between 2019 and 2021, in 18 sites across Africa, Asia, Europe and the Caribbean. At baseline, there were in these sites 12 502 participants with high-quality spirometry. A total of 6452 were followed up, with 5936 completing the study core questionnaire. Of these, 4044 also provided high-quality pre- and post-bronchodilator spirometry.
On both occasions, the core questionnaire covered information on respiratory symptoms, doctor diagnoses, health care use, medication use and ealth status, as well as potential risk factors. Information on occupation, environmental exposures and diet was also collected
Control of 2D Flexible Structures by Confinement of Vibrations and Regulation of Their Energy Flow
In this paper, we investigate the control of 2D flexible structures by vibration confinement and the regulation of their energy flow along prespecified spatial paths. A discretized-model-based feedback strategy, aiming at confining and suppressing simultaneously the vibration, is proposed. It is assumed that the structure consists of parts that are sensitive to vibrations. The control design introduces a new pseudo-modal matrix derived from the computed eigenvectors of the discretized model. Simulations are presented to show the efficacy of the proposed control law. A parametric study is carried out to examine the effects of the different control parameters on the simultaneous confinement and suppression of vibrations. In addition, we conducted a set of simulations to investigate the flow control of vibrational energy during the confinement-suppression process. We found that the energy flow can be regulated via a set of control parameters for different confinement configurations
Double-Faced Active Intelligent Reflecting Surfaces-Assisted Symbiotic Radio Communications
With the extensive deployment of Internet-of-Things (IoT) in next generation wireless systems, the problems of energy efficiency and battery life become exacerbated, highlighting the pressing need for innovative solutions. Symbiotic radio (SR) is considered one of the emerging technologies that aims at providing an energy-efficient solution for the ubiquitous IoT applications. In this paper, we propose an SR system that is assisted with a double-faced active intelligent reflecting surface (DFA-IRS). The proposed system consists of an active transmitter (AT), an active receiver (AR), a backscatter receiver (BR), a DFA-IRS, and an IoT device that is connected to the DFA-IRS. We formulated a BR spectral efficiency maximization problem via optimizing the active beamforming vector at the AT, the power amplification factors of the IRS active elements, and the IRS phase shift at each active element under the constraints of a maximum power budget and the AR spectral efficiency requirements. The formulated problem is non-convex due to the coupling between different variables. Hence, we divided the main problems into three sub-problems and utilized the successive convex approximation (SCA) and the semidefinite relaxation (SDR) techniques to obtain a convex equivalent problem that can be solved using conventional optimization tools such as CVX. Simulation results show that the proposed algorithm converges in few number of iterations. Moreover, the proposed scheme achieves better BR spectral efficiency when compared to the case where a single-faced active IRS or a simultaneously transmitting and reflecting IRS (STAR-IRS) counterpart is used