12,102 research outputs found
A NuSTAR Observation of the Gamma-ray Emitting Millisecond Pulsar PSR J1723-2837
We report on the first NuSTAR observation of the gamma-ray emitting
millisecond pulsar binary PSR J1723-2837. X-ray radiation up to 79 keV is
clearly detected and the simultaneous NuSTAR and Swift spectrum is well
described by an absorbed power-law with a photon index of ~1.3. We also find
X-ray modulations in the 3-10 keV, 10-20 keV, 20-79 keV, and 3-79 keV bands at
the 14.8-hr binary orbital period. All these are entirely consistent with
previous X-ray observations below 10 keV. This new hard X-ray observation of
PSR J1723-2837 provides strong evidence that the X-rays are from the
intrabinary shock via an interaction between the pulsar wind and the outflow
from the companion star. We discuss how the NuSTAR observation constrains the
physical parameters of the intrabinary shock model.Comment: Accepted for publication in ApJ. 5 pages, 3 figure
Swift, XMM-Newton, and NuSTAR observations of PSR J2032+4127/MT91 213
We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical
observations on PSR J2032+4127/MT91 213, the gamma-ray binary candidate with a
period of 45-50 years. The coming periastron of the system was predicted to be
in November 2017, around which high-energy flares from keV to TeV are expected.
Recent studies with Chandra and Swift X-ray observations taken in 2015/16
showed that its X-ray emission has been brighter by a factors of ~10 than that
before 2013, probably revealing some on-going activities between the pulsar
wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong
evidence of a single vigorous brightening trend, but rather several strong
X-ray flares on weekly to monthly timescales with a slowly brightening
baseline, namely the low state. The NuSTAR and XMM-Newton observations taken
during the flaring and the low states, respectively, show a denser environment
and a softer power-law index during the flaring state, implying that the pulsar
wind interacted with stronger stellar winds of the companion to produce the
flares. These precursors would be crucial in studying the predicted giant
outburst from this extreme gamma-ray binary during the periastron passage in
late 2017.Comment: 6 pages, including 3 figures and 2 tables. Accepted for publication
in Ap
NuSTAR observations and broadband spectral energy distribution modeling of the millisecond pulsar binary PSR J1023+0038
We report the first hard X-ray (3-79 keV) observations of the millisecond
pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown
transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered
MSP state. The NuSTAR observations were taken in both LMXB state and
rotation-powered state. The source is clearly seen in both states up to ~79
keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher
that in the rotation-powered state. The hard X-rays show clear orbital
modulation during the X-ray faint rotation-powered state but the X-ray orbital
period is not detected in the X-ray bright LMXB state. In addition, the X-ray
spectrum changes from a flat power-law spectrum during the rotation-powered
state to a steeper power-law spectrum in the LMXB state. We suggest that the
hard X-rays are due to the intra-binary shock from the interaction between the
pulsar wind and the injected material from the low-mass companion star. During
the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler
boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter
of the accretion disk due to the gamma-ray irradiation from the pulsar stops
almost all the pulsar wind, resulting the disappearance of the X-ray orbital
modulation.Comment: 8 pages, 6 figures; accepted for publication in Ap
High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213
PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting
around a high-mass Be type star with a very long orbital period of 25-50years,
and is approaching periastron, which will occur in late 2017/early 2018. This
system comprises with a young pulsar and a Be type star, which is similar to
the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore
that PSR J2032+4127 shows an enhancement of high-energy emission caused by the
interaction between the pulsar wind and Be wind/disk around periastron. Ho et
al. recently reported a rapid increase in the X-ray flux from this system. In
this paper, we also confirm a rapid increase in the X-ray flux along the orbit,
while the GeV flux shows no significant change. We discuss the high-energy
emissions from the shock caused by the pulsar wind and stellar wind interaction
and examine the properties of the pulsar wind in this binary system. We argue
that the rate of increase of the X-ray flux observed by Swift indicates (1) a
variation of the momentum ratio of the two-wind interaction region along the
orbit, or (2) an evolution of the magnetization parameter of the pulsar wind
with the radial distance from the pulsar. We also discuss the pulsar wind/Be
disk interaction at the periastron passage, and propose the possibility of
formation of an accretion disk around the pulsar. We model high-energy
emissions through the inverse-Compton scattering process of the
cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap
The X-ray modulation of PSR J2032+4127/MT91 213 during the Periastron Passage in 2017
We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area
Telescope (Fermi-LAT), and Karl G. Jansky Very Large Array (VLA) observations
of the gamma-ray binary PSR J2032+4127/MT91 213, of which the periastron
passage has just occurred in November 2017. In the Swift X-ray light curve, the
flux was steadily increasing before mid-October 2017, however, a sharp X-ray
dip on a weekly time-scale is seen during the periastron passage, followed by a
post-periastron X-ray flare lasting for ~20 days. We suggest that the X-ray dip
is caused by (i) an increase of the magnetization parameter at the shock, and
(ii) the suppression due to the Doppler boosting effect. The 20-day
post-periastron flare could be a consequence of the Be stellar disk passage by
the pulsar. An orbital GeV modulation is also expected in our model, however,
no significant variability is seen in the Fermi-LAT light curve. We suspect
that the GeV emission resulted from the interaction between the binary's
members is hidden behind the bright magnetospheric emission of the pulsar.
Pulsar gating technique would be useful to remove the magnetospheric emission
and recover the predicted GeV modulation, if an accurate radio timing solution
over the periastron passage is provided in the future.Comment: 6 pages, including 2 figures. Accepted for publication in Ap
An Investigation of state changes of PSR J2021+4026 and Vela pulsar
We investigate the high energy emission activities of two bright gamma-ray
pulsars, PSR~J2021+4026 and Vela. For PSR~J2021+4026, the state changes in the
gamma-ray flux and spin-down rate have been observed. We report that the
long-term evolution of the gamma-ray flux and timing behavior of PSR~J2021+4026
suggests a new gamma-ray flux recovery at around MJD~58910 and a flux decrease
around MJD~59500. During this epoch, the staying time, the gamma-ray flux
difference and spin-down rate are smaller than previous epochs in the same
state. The waiting timescale of the quasi-periodic state changes is similar to
the waiting timescale of the glitch events of the Vela pulsar. For the Vela
pulsar, the quench of the radio pulse was in a timescale of ~s after
the 2016 glitch, and the glitch may disturb the structure of the magnetosphere.
Nevertheless, we did not find any evidence for a long-term change in the
gamma-ray emission properties using years of -LAT data, and therefore,
no long-term magnetosphere structural change. We also conduct searching for
photons above 100~GeV using 15-year -LAT data, and found none. Our
results provide additional information for the relation between the state
change of the gamma-ray emission and the glitch event.Comment: 11 pages,8 figure
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LCMSMS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using noninvasive sampling of saliva and/or urine
Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope
We report the results from a detailed ray investigation in the field
of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with years
of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we
found that its MeV-GeV emission is mainly originated from the "Region A" of the
TeV feature. Its ray spectrum can be modeled with a single power-law
with a photon index of from few hundreds MeV to TeV. Moreover,
an elongated feature, which extends from "Region A" toward northwest for
, is discovered for the first time. The orientation of this
feature is similar to that of a large scale atomic/molecular gas distribution.
For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for
this unidentified TeV source. On the other hand, we have detected a new point
source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved
which resembles that of a ray pulsar. This makes it possibly
associated with PSR B1737-20 or PSR J1739-3023.Comment: 11 pages, 7 figures, 2 tables, accepted for publication in MNRA
- …