1,104 research outputs found
Fabrication and transport critical currents of multifilamentary MgB2/Fe wires and tapes
Multifilamentary MgB2/Fe wires and tapes with high transport critical current
densities have been fabricated using a straightforward powder-in-tube (PIT)
process. After annealing, we measured transport jc values up to 1.1 * 105 A/cm2
at 4.2 K and in a field of 2 T in a MgB2/Fe square wire with 7 filaments
fabricated by two-axial rolling, and up to 5 * 104 A/cm2 at 4.2 K in 1 T in a
MgB2/Fe tape with 7 filaments. For higher currents these multifilamentary wires
and tapes quenched due to insufficient thermal stability of filaments. Both the
processing routes and deformation methods were found to be important factors
for fabricating multifilamentary MgB2 wires and tapes with high transport jc
values.Comment: 13 pages, 7 figure
Anatomic Insights into Disrupted Small-World Networks in Pediatric Posttraumatic Stress Disorder.
Purpose To use diffusion-tensor (DT) imaging and graph theory approaches to explore the brain structural connectome in pediatric posttraumatic stress disorder (PTSD). Materials and Methods This study was approved by the relevant research ethics committee, and all participants’ parents or guardians provided informed consent. Twenty-four pediatric patients with PTSD and 23 control subjects exposed to trauma but without PTSD were recruited after the 2008 Sichuan earthquake. The structural connectome was constructed by using DT imaging tractography and thresholding the mean fractional anisotropy of 90 brain regions to yield 90 × 90 partial correlation matrixes. Graph theory analysis was used to examine the group-specific topologic properties, and nonparametric permutation tests were used for group comparisons of topologic metrics. Results Both groups exhibited small-world topology. However, patients with PTSD showed an increase in the characteristic path length (P = .0248) and decreases in local efficiency (P = .0498) and global efficiency (P = .0274). Furthermore, patients with PTSD showed reduced nodal centralities, mainly in the default mode, salience, central executive, and visual regions (P < .05, corrected for false-discovery rate). The Clinician-Administered PTSD Scale score was negatively correlated with the nodal efficiency of the left superior parietal gyrus (r = −0.446, P = .043). Conclusion The structural connectome showed a shift toward “regularization,” providing a structural basis for functional alterations of pediatric PTSD. These abnormalities suggest that PTSD can be understood by examining the dysfunction of large-scale spatially distributed neural networks
On the sample size dependence of the critical current density in MgB superconductors
Sample size dependent critical current density has been observed in magnesium
diboride superconductors. At high fields, larger samples provide higher
critical current densities, while at low fields, larger samples give rise to
lower critical current densities. The explanation for this surprising result is
proposed in this study based on the electric field generated in the
superconductors. The dependence of the current density on the sample size has
been derived as a power law ( is the factor
characterizing curve ). This dependence provides one with
a new method to derive the factor and can also be used to determine the
dependence of the activation energy on the current density.Comment: Revtex, 4 pages, 5 figure
Fingering Instability of Dislocations and Related Defects
We identify a fundamental morphological instability of mobile dislocations in
crystals and related line defects. A positive gradient in the local driving
force along the direction of defect motion destabilizes long-wavelength
vibrational modes, producing a ``fingering'' pattern. The minimum unstable
wavelength scales as the inverse square root of the force gradient. We
demonstrate the instability's onset in simulations of a screw dislocation in Al
(via molecular dynamics) and of a vortex in a 3-d XY ``rotator'' model.Comment: 4 pages, 3 figure
- …