3,434 research outputs found

    Landau-Ginzburg orbifolds with discrete torsion

    Full text link
    We complete the classification of (2,2) vacua that can be constructed from Landau--Ginzburg models by abelian twists with arbitrary discrete torsions. Compared to the case without torsion the number of new spectra is surprisingly small. In contrast to a popular expectation mirror symmetry does not seem to be related to discrete torsion (at least not in the present compactification framework): The Berglund-H"ubsch construction naturally extends to orbifolds with torsion; for more general potentials, on the other hand, the new spectra neither have nor provide mirror partners in our class of models.Comment: 12 pages, LaTe

    The triton in a finite volume

    Get PDF
    Understanding the volume dependence of the triton binding energy is an important step towards lattice simulations of light nuclei. We calculate the triton binding energy in a finite cubic box with periodic boundary conditions to leading order in the pionless effective field theory. Higher order corrections are estimated and the proper renormalization of our results is verified explicitly. We present results for the physical triton as well as for the pion-mass dependence of the triton spectrum near the ``critical'' pion mass, Mpi_c ~ 197 MeV, where chiral effective field theory suggests that the nucleon-nucleon scattering lengths in the singlet- and triplet-channels diverge simultaneously. An extension of the Luescher formula to the three-body system is implicit in our results.Comment: 11 pages, 4 figure

    Coherent field emission image of graphene predicted with a microscopic theory

    Full text link
    Electrons in the mono-layer atomic sheet of graphene have a long coherence length of the order of micrometers. We will show that this coherence is transmitted into the vacuum via electric field assisted electron emission from the graphene edge. The emission current density is given analytically. The parity of the carbon pi-electrons leads to an image whose center is dark as a result of interference. A dragonfly pattern with a dark body perpendicular to the edge is predicted for the armchair edge whose emission current density is vanishing with the mixing angle of the pseudo-spin. The interference pattern may be observed up to temperatures of thousand Kelvin as evidence of coherent field emission. Moreover, this phenomenon leads to a novel coherent electron line source that can produce interference patterns of extended objects with linear sizes comparable to the length of the graphene edge.Comment: 6 pages, 3 figure

    Searching for K3 Fibrations

    Full text link
    We present two methods for studying fibrations of Calabi-Yau manifolds embedded in toric varieties described by single weight systems. We analyse 184,026 such spaces and identify among them 124,701 which are K3 fibrations. As some of the weights give rise to two or three distinct types of fibrations, the total number we find is 167,406. With our methods one can also study elliptic fibrations of 3-folds and K3 surfaces. We also calculate the Hodge numbers of the 3-folds obtaining more than three times as many as were previously known.Comment: 21 pages, LaTeX2e, 4 eps figures, uses packages amssymb,latexsym,cite,epi

    Physisorption of an electron in deep surface potentials off a dielectric surface

    Full text link
    We study phonon-mediated adsorption and desorption of an electron at dielectric surfaces with deep polarization-induced surface potentials where multi-phonon transitions are responsible for electron energy relaxation. Focusing on multi-phonon processes due to the nonlinearity of the coupling between the external electron and the acoustic bulk phonon triggering the transitions between surface states, we calculate electron desorption times for graphite, MgO, CaO, (\text{Al}_2\text{O}_3), and (\text{SiO}_2) and electron sticking coefficients for (\text{Al}_2\text{O}_3), CaO, and (\text{SiO}_2). To reveal the kinetic stages of electron physisorption, we moreover study the time evolution of the image state occupancy and the energy-resolved desorption flux. Depending on the potential depth and the surface temperature we identify two generic scenarios: (i)adsorption via trapping in shallow image states followed by relaxation to the lowest image state and desorption from that state via a cascade through the second strongly bound image state in not too deep potentials and (ii)adsorption via trapping in shallow image states but followed by a relaxation bottleneck retarding the transition to the lowest image state and desorption from that state via a one step process to the continuum in deep potentials.Comment: 12 pages, 7 figure

    An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts

    Full text link
    Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic-K3 fibrations whose mirror images are also elliptic-K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.Comment: 30 pages, 15 colour figure
    • …
    corecore