19 research outputs found

    Root-colonization ability of antagonistic Streptomyces griseoviridis

    No full text

    Recommended Regulated Non-Quarantine Pests: towards a wider and better application of the international concept in the EPPO region

    No full text
    Description of the subject. Measures against regulated non-quarantine pests (RNQPs) aim to prevent an unacceptable economic impact on the intended use of plants for planting by pests that are already present in the area. Therefore unlike quarantine pests, the likelihood of introduction of RNQPs is not a relevant criterion. Although the term RNQP was introduced in the FAO International Plant Protection Convention (IPPC) in 1997, to date, very few countries in the EPPO region have used the RNQP concept explicitly. However, in December 2016, the European Union introduced RNQPs in EU Regulation 2016/2031 on protective measures against pests of plants, in line with international standards, to be implemented by December 2019. Objectives. EPPO undertook a 2-year project, funded by the European Commission, to develop a methodology to assess whether pests should be RNQPs and apply this methodology to pest/host/intended use combinations obtained from Council Directive 2000/29/EC and EU Marketing Directives on reproductive material. Method. A methodology allowing a quick risk analysis was developed. Results. This methodology was applied to approximately 1,400 pest/host/intended use combinations within different Sector expert working groups, including 44 combinations for the seed potato (i.e. potato plants for planting) sector. When applied to blackleg disease on seed potatoes, experts recommended the listing of the genera Dickeya and Pectobacterium as RNQPs for the EU and the EPPO region. Conclusions. This project has produced a harmonized evaluation process and recommendations by experts for several pest/host/intended use combinations (as Dickeya spp. and Pectobacterium spp. for seed potatoes) for regulation as RNQPs throughout the EPPO region. EPPO is now considering whether to endorse these recommendations

    Quantification of Frankia Strains and Other Root-Associated Bacteria in Pure Cultures and in the Rhizosphere of Axenic Seedlings by High-Performance Liquid Chromatography-Based Muramic Acid Assay

    No full text
    Application of a high-performance liquid chromatography-based muramic acid assay with precolumn fluorescence derivatization to quantification of root-associated bacteria was studied both in pure cultures and in the rhizosphere of axenic Festuca rubra seedlings. Quantities of muramic acid from acid-hydrolyzed cells of Frankia strains, Streptomyces griseoviridis, Enterobacter agglomerans, Klebsiella pneumoniae, Pseudomonas sp., and Bacillus polymyxa were mostly proportional to the respective cell protein and carbon quantities, but in some strains, culture age and particularly sporulation affected these ratios considerably. The muramic acid/cell protein ratio was generally 2 to 4 times higher in strains of the two actinomycete genera, Frankia and Streptomyces, than in the rest of the strains. Quantification of Frankia strains, S. griseoviridis, E. agglomerans, and Pseudomonas sp. was also attempted from the rhizosphere of F. rubra seedlings which had been inoculated with pure cultured bacteria and incubated briefly. It was possible to quantify Frankia cells by use of the muramic acid assay from both the root and the growth medium, whereas cells of the rest of the bacterial genera could only be detected in the medium. The detection limit for muramic acid was about 10 ng/ml hydrolysis volume, and from the Festuca rhizosphere, 28 to 63% of the muramic acid in the Frankia inoculum was recovered
    corecore