407 research outputs found

    Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection

    Get PDF
    Functional magnetic resonance imaging can demonstrate the functional anatomy of cognitive processes. In patients with refractory temporal lobe epilepsy, evaluation of preoperative verbal and visual memory function is important as anterior temporal lobe resections may result in material specific memory impairment, typically verbal memory decline following left and visual memory decline after right anterior temporal lobe resection. This study aimed to investigate reorganization of memory functions in temporal lobe epilepsy and to determine whether preoperative memory functional magnetic resonance imaging may predict memory changes following anterior temporal lobe resection. We studied 72 patients with unilateral medial temporal lobe epilepsy (41 left) and 20 healthy controls. A functional magnetic resonance imaging memory encoding paradigm for pictures, words and faces was used testing verbal and visual memory in a single scanning session on a 3T magnetic resonance imaging scanner. Fifty-four patients subsequently underwent left (29) or right (25) anterior temporal lobe resection. Verbal and design learning were assessed before and 4 months after surgery. Event-related functional magnetic resonance imaging analysis revealed that in left temporal lobe epilepsy, greater left hippocampal activation for word encoding correlated with better verbal memory. In right temporal lobe epilepsy, greater right hippocampal activation for face encoding correlated with better visual memory. In left temporal lobe epilepsy, greater left than right anterior hippocampal activation on word encoding correlated with greater verbal memory decline after left anterior temporal lobe resection, while greater left than right posterior hippocampal activation correlated with better postoperative verbal memory outcome. In right temporal lobe epilepsy, greater right than left anterior hippocampal functional magnetic resonance imaging activation on face encoding predicted greater visual memory decline after right anterior temporal lobe resection, while greater right than left posterior hippocampal activation correlated with better visual memory outcome. Stepwise linear regression identified asymmetry of activation for encoding words and faces in the ipsilateral anterior medial temporal lobe as strongest predictors for postoperative verbal and visual memory decline. Activation asymmetry, language lateralization and performance on preoperative neuropsychological tests predicted clinically significant verbal memory decline in all patients who underwent left anterior temporal lobe resection, but were less able to predict visual memory decline after right anterior temporal lobe resection. Preoperative memory functional magnetic resonance imaging was the strongest predictor of verbal and visual memory decline following anterior temporal lobe resection. Preoperatively, verbal and visual memory function utilized the damaged, ipsilateral hippocampus and also the contralateral hippocampus. Memory function in the ipsilateral posterior hippocampus may contribute to better preservation of memory after surgery

    The impact of SARS-CoV-2 vaccination in Dravet Syndrome: A UK survey

    Get PDF
    Background: The COVID-19 pandemic led to the urgent need for accelerated vaccine development. Approved vaccines have proved to be safe and well tolerated across millions of people in the general population. Dravet Syndrome (DS) is a severe, early onset, developmental and epileptic encephalopathy. Vaccination is a precipitating factor for seizures. Whilst there is no evidence that vaccine-precipitated seizures lead to adverse outcomes in people with DS, fear surrounding vaccination can remain for caregivers of people with DS, in some cases resulting in rejection of recommended vaccinations, leaving individuals more vulnerable to the relevant infections. A greater understanding of the safety profile of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in this vulnerable group will help provide guidance for caregivers and clinicians when considering vaccination. / Methods: A cross‐sectional survey regarding COVID-19 and SARS-CoV-2 vaccine, in people with DS, was conducted by Dravet Syndrome UK (DSUK). Concomitantly, a review of individuals with DS who had recently received the SARS-CoV-2 vaccine, and who are resident at the Chalfont Centre for Epilepsy (CCE), or attend epilepsy clinics at the National Hospital for Neurology and Neurosurgery (NHNN), was undertaken. / Results: 38 people completed the DSUK survey. 37% of caregivers reported being concerned about someone with DS receiving the SARS-CoV-2 vaccine; with some reporting that they would decline a vaccine when offered. 77% had not received any advice from a health care professional about the SARS-CoV-2 vaccination. 18/38 were eligible for SARS-CoV-2 vaccination, of whom nine had received their first vaccine dose. Combining the results of the DSUK survey and the review of individuals monitored at CCE or NHNN, fifteen people with DS had received their first dose of the SARS-CoV-2 vaccine. 11/15 (73%) reported at least one side effect, the most common being fatigue (6/15; 40%) and fever (6/15; 40%). Three individuals (20%) reported an increase in seizure frequency after the first vaccine dose. No increase in seizure frequency or duration was reported after the second dose. / Conclusion: Overall, these results suggest that SARS-CoV-2 vaccines are safe and well tolerated in individuals with DS, as they are in most people without DS. In most people with DS, SARS-CoV-2 vaccine does not appear to be associated with an increase in the frequency or duration of seizures, even in those who develop fever post-vaccination. Many caregivers are concerned about a person with DS receiving a SARS-CoV-2 vaccine, with some reporting that they would decline a SARS-CoV-2 vaccine when offered. It is crucial that healthcare professionals are proactive in providing accurate information regarding the risks and benefits of vaccination in this population, given the potential for serious outcomes from infection

    Age-Specific 18F-FDG Image Processing Pipelines and Analysis Are Essential for Individual Mapping of Seizure Foci in Paediatric Patients with Intractable Epilepsy

    Get PDF
    Fluoro-18-deoxyglucose positron emission tomography (FDG-PET) is an important tool for the pre-surgical assessment of children with drug-resistant epilepsy. Standard assessment is carried out visually and this is often subjective and highly user-dependent. Voxel-wise statistics can be used to remove user-dependent biases by automatically identifying areas of significant hypo/hyper-metabolism, associated to the epileptogenic area. In the clinical settings, this analysis is carried out using commercially available software. These software packages suffer from two main limitations when applied to paediatric PET data: 1) paediatric scans are spatially normalised to an adult standard template and 2) statistical comparisons use an adult control dataset. The aim of this work is to provide a reliable observer-independent pipeline for the analysis of paediatric FDG-PET scans, as part of pre-surgical planning in epilepsy. METHODS: A pseudo-control dataset (n = 19 for 6-9y, n = 93 for 10-20y) was used to create two age-specific FDG-PET paediatric templates in standard paediatric space. The FDG-PET scans of 46 epilepsy patients (n = 16 for 6-9y, n = 30 for 10-17y) were retrospectively collated and analysed using voxel-wise statistics. This was implemented with the standard pipeline available in the commercial software Scenium and an in-house Statistical Parametric Mapping v.8 (SPM8) pipeline (including age-specific paediatric templates and normal database). A kappa test was used to assess the level of agreement between findings of voxel-wise analyses and the clinical diagnosis of each patient. The SPM8 pipeline was further validated using post-surgical seizure-free patients. RESULTS: Improved agreement with the clinical diagnosis was reported using SPM8, in terms of focus localisation, especially for the younger patient group: kScenium=0.489 versus kSPM=0.805. The proposed pipeline also showed a sensitivity of ~70% in both age ranges, for the localisation of hypo-metabolic areas on paediatric FDG-PET scans in post-surgical seizure-free patients. CONCLUSION: We show that by creating age-specific templates and using paediatric control databases, our pipeline provides an accurate and sensitive semi-quantitative method for assessing FDG-PET scans of patients under 18y

    Disrupted White Matter Integrity and Structural Brain Networks in Temporal Lobe Epilepsy With and Without Interictal Psychosis

    Get PDF
    Background: Despite the importance of psychosis as a comorbidity of temporal lobe epilepsy (TLE), the underlying neural mechanisms are still unclear. We aimed to investigate abnormalities specific to psychosis in TLE, using diffusion MRI parameters and graph-theoretical network analysis. Material and Methods: We recruited 49 patients with TLE (20 with and 29 without interictal schizophrenia-like psychosis) and 42 age-/gender-matched healthy controls. We performed 3-tesla MRI scans including 3D T1-weighted imaging and diffusion tensor imaging in all participants. Among the three groups, fractional anisotropy (FA), mean diffusivity (MD), and global network metrics were compared by analyses of covariance. Regional connectivity strength was compared by network-based statistics. Results: Compared to controls, TLE patients showed significant temporal and extra-temporal changes in FA, and MD, which were more severe and widespread in patients with than without psychosis. We observed distinct differences between TLE patients with and without psychosis in the anterior thalamic radiation (ATR), inferior fronto-occipital fasciculus (IFOF), and inferior longitudinal fasciculus (ILF). Similarly, for network metrics, global, and local efficiency and increased path length were significantly reduced in TLE patients compared to controls, but with more severe changes in TLE with psychosis than without psychosis. Network-based statistics detected significant differences between TLE with and without psychosis mainly involving the left limbic and prefrontal areas. Conclusion: TLE patients with interictal schizophrenia-like psychosis showed more widespread and severe white matter impairment, involving the ATR, IFOF and ILF, as well as disrupted network connectivity, particularly in the left limbic and prefrontal cortex, than patients without psychosis

    Fission yeast 26S proteasome mutants are multi-drug resistant due to stabilization of the pap1 transcription factor

    Get PDF
    Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten complementation groups. Cloning experiments revealed that most of the mutants were in essential genes encoding various 26S proteasome subunits. We found that the proteasome mutants are multi-drug resistant due to stabilization of the stress-activated transcription factor Pap1. We show that the ubiquitylation and ultimately the degradation of Pap1 depend on the Rhp6/Ubc2 E2 ubiquitin conjugating enzyme and the Ubr1 E3 ubiquitin-protein ligase. Accordingly, mutants lacking Rhp6 or Ubr1 display drug-resistant phenotypes

    Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference.

    Get PDF
    A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment

    Imaging language pathways predicts postoperative naming deficits

    Get PDF
    Naming difficulties are a well recognised, but difficult to predict, complication of anterior temporal lobe resection (ATLR) for refractory epilepsy. We used MR tractography preoperatively to demonstrate the structural connectivity of language areas in patients undergoing dominant hemisphere ATLR. Greater lateralisation of tracts to the dominant hemisphere was associated with greater decline in naming function. We suggest that this method has the potential to predict language deficits in patients undergoing ATLR

    Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond

    Get PDF
    Epilepsy is a diverse brain disorder, and the pathophysiology of its various forms and comorbidities is largely unknown. A recent machine learning method enables us to estimate an individual’s “brain-age” from MRI; this brain-age prediction is expected as a novel individual biomarker of neuropsychiatric disorders. The aims of this study were to estimate the brain-age for various categories of epilepsy and to evaluate clinical discrimination by brain-age for (1) the effect of psychosis on temporal lobe epilepsy (TLE), (2) psychogenic nonepileptic seizures (PNESs) from MRI-negative epilepsies, and (3) progressive myoclonic epilepsy (PME) from juvenile myoclonic epilepsy (JME). In total, 1196 T1-weighted MRI scans from healthy controls (HCs) were used to build a brain-age prediction model with support vector regression. Using the model, we calculated the brain-predicted age difference (brain-PAD: predicted age—chronological age) of the HCs and 318 patients with epilepsy. We compared the brain-PAD values based on the research questions. As a result, all categories of patients except for extra-temporal lobe focal epilepsy showed a significant increase in brain-PAD. TLE with hippocampal sclerosis presented a significantly higher brain-PAD than several other categories. The mean brain-PAD in TLE with interictal psychosis was 10.9 years, which was significantly higher than TLE without psychosis (5.3 years). PNES showed a comparable mean brain-PAD (10.6 years) to that of epilepsy patients. PME had a higher brain-PAD than JME (22.0 vs. 9.3 years). In conclusion, neuroimaging-based brain-age prediction can provide novel insight into or clinical usefulness for the diverse symptoms of epileps

    Impaired decisional impulsivity in pathological videogamers

    Get PDF
    Abstract Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management
    corecore