86 research outputs found

    U-Values of Flat and Domed Skylights U-Values of Flat and Domed Skylights

    No full text
    ABSTRACT Data from nighttime measurements of the net heat flow through several types of skylights is presented. A well-known thermal test facility was reconfigured to measure the net heat flow through the bottom of a skylight/light well combination. Use of this data to determine the U-factor of the skylight is considerably more complicated than the analogous problem of a vertical fenestration contained in a test mask. Correction of the data for heat flow through the skylight well surfaces and evidence for the nature of the heat transfer between the skylight and the bottom of the well is discussed. The resulting measured U-values are presented and compared with calculations using the WINDOW4 and THERM programs

    U-Values of Flat and Domed Skylights U-Values of Flat and Domed Skylights

    No full text
    ABSTRACT Data from nighttime measurements of the net heat flow through several types of skylights is presented. A well-known thermal test facility was reconfigured to measure the net heat flow through the bottom of a skylight/light well combination. Use of this data to determine the U-factor of the skylight is considerably more complicated than the analogous problem of a vertical fenestration contained in a test mask. Correction of the data for heat flow through the skylight well surfaces and evidence for the nature of the heat transfer between the skylight and the bottom of the well is discussed. The resulting measured U-values are presented and compared with calculations using the WINDOW4 and THERM programs

    U-values of flat and domed skylights

    No full text
    Data from nighttime measurements of the net heat flow through several types of skylights is presented. A well-known thermal test facility was reconfigured to measure the net heat flow through the bottom of a skylight/light well combination. Use of this data to determine the U-factor of the skylight is considerably more complicated than the analogous problem of a vertical fenestration contained in a test mask. Correction of the data for heat flow through the skylight well surfaces and evidence for the nature of the heat transfer between the skylight and the bottom of the well is discussed. The resulting measured U-values are presented and compared with calculations using the WINDOW4 and THERM programs

    Solar heat gain through fenestration systems containing shading: Summary of procedures for estimating performance from minimal data

    Get PDF
    The computational methods for calculating the properties of glazing systems containing shading from the properties of their components have been developed, but the measurement standards and property data bases necessary to apply them have not. It is shown that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about the shading. Detailed formulas are presented, and performance multipliers are defined for the approximate treatment of simple glazings with shading. As higher accuracy is demanded, the formulas become very complicated
    • …
    corecore