11,118 research outputs found

    Special values of shifted convolution Dirichlet series

    Full text link
    In a recent important paper, Hoffstein and Hulse generalized the notion of Rankin-Selberg convolution LL-functions by defining shifted convolution LL-functions. We investigate symmetrized versions of their functions. Under certain mild conditions, we prove that the generating functions of certain special values are linear combinations of weakly holomorphic quasimodular forms and "mixed mock modular" forms.Comment: 18 pages, corrected slight error in main theorem and made according minor edits in Sections 3.4 and 3.

    Novel structure formation of a phase separating colloidal fluid in a ratchet potential

    Full text link
    Based on Dynamical Density Functional Theory (DDFT) we investigate a binary mixture of interacting Brownian particles driven over a substrate via a one-dimensional ratchet potential. The particles are modeled as soft spheres where one component carries a classical Heisenberg spin. In the absence of a substrate field, the system undergoes a first-order fluid-fluid demixing transition driven by the spin-spin interaction. We demonstrate that the interplay between the intrinsic spinodal decomposition and time-dependent external forces leads to a novel dynamical instability where stripes against the symmetry of the external potential form. This structural transition is observed for a broad range of parameters related to the ratchet potential. Moreover, we find intriguing effects for the particle transport.Comment: 6 pages, 4 figure

    Eulerian method for multiphase interactions of soft solid bodies in fluids

    Full text link
    We introduce an Eulerian approach for problems involving one or more soft solids immersed in a fluid, which permits mechanical interactions between all phases. The reference map variable is exploited to simulate finite-deformation constitutive relations in the solid(s) on the same fixed grid as the fluid phase, which greatly simplifies the coupling between phases. Our coupling procedure, a key contribution in the current work, is shown to be computationally faster and more stable than an earlier approach, and admits the ability to simulate both fluid--solid and solid--solid interaction between submerged bodies. The interface treatment is demonstrated with multiple examples involving a weakly compressible Navier--Stokes fluid interacting with a neo-Hookean solid, and we verify the method's convergence. The solid contact method, which exploits distance-measures already existing on the grid, is demonstrated with two examples. A new, general routine for cross-interface extrapolation is introduced and used as part of the new interfacial treatment

    A thermodynamical model for non-extremal black p-brane

    Full text link
    We show that the correct entropy, temperature (and absorption probability) of non-extremal black p-brane can be reproduced by a certain thermodynamical model when maximizing its entropy. We show that the form of the model is related to the geometrical similarity of non-extremal and near extremal black p-brane at near horizon region, and argue about the appropriateness of the model.Comment: Almost the same version as the paper appeared in Physical Review

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    Get PDF
    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis
    • …
    corecore