16 research outputs found

    Genome assisted probiotic characterization and application of Bacillus velezensis ZBG17 as an alternative to antibiotic growth promoters in broiler chickens

    No full text
    Not AvailableThe present study describes genome annotation and phenotypic characterization of Bacillus velezensis ZBG17 and evaluation of its performance as antibiotic growth promoter substitute in broiler chickens. ZBG17 comprises 3.89 Mbp genome with GC content of 46.5%. ZBG17 could tolerate simulated gastrointestinal juices prevalent in the animal gut. Some adhesion-associated genomic features of ZBG17 supported the experimentally determined cell surface hydrophobicity and cell aggregation results. ZBG17 encoded multiple secondary metabolite gene clusters correlating with its broad-spectrum antibacterial activity. Interestingly, ZBG17 completely inhibited Salmonella enterica and Escherichia coli within 6 h and 8 h in liquid co-culture assay, respectively. ZBG17 genome analysis did not reveal any genetic determinant associated with reported safety hazards for use as a poultry direct-fed microbial. Dietary supplementation of ZBG17 significantly improved feed utilization efficiency and humoral immune response in broiler chickens, suggesting its prospective application as a direct-fed microbial in broiler chickens.Not AvailablePathogen exclusionantimicrobialsDirect fed microbial

    Characterization of carbamoyl phosphate synthetase of <i>Streptomyces </i>spp.

    No full text
    931-935Carbamoyl phosphate synthetase (CPS) activity in Streptomyces lividans was repressed (70%) by addition of arginine and uracil in the growth medium. Enzyme activity was also inhibited by UMP and activated by ornithine and IMP. Pattern of inhibition and activation was similar irrespective of whether the cells were grown in medium supplemented with arginine or with uracil. A mutant of S. coelicolor with dual auxotrophy for arginine and uracil possessed only about 20% of CPS activity compared to the wild-type strain. An activity staining protocol has been developed for CPS enzyme. Using this method a single CPS band has been observed in the crude extracts of Escherichia coli as well as in S. lividans. Taken together, our results supported the conclusion that Streptomyces species might possess a single CPS enzyme unlike other gram-positive bacteria, which show the presence of two pathway-specific isozymes (Bacillus) or none (Lactobacillus and Leuconostoc).</i
    corecore