100 research outputs found
Phonons in random alloys: the itinerant coherent-potential approximation
We present the itinerant coherent-potential approximation(ICPA), an analytic,
translationally invariant and tractable form of augmented-space-based,
multiple-scattering theory in a single-site approximation for harmonic phonons
in realistic random binary alloys with mass and force-constant disorder.
We provide expressions for quantities needed for comparison with experimental
structure factors such as partial and average spectral functions and derive the
sum rules associated with them. Numerical results are presented for Ni_{55}
Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for
weak force-constant disorder and the latter for strong. We present results on
dispersion curves and disorder-induced widths. Direct comparisons with the
single-site coherent potential approximation(CPA) and experiment are made which
provide insight into the physics of force-constant changes in random alloys.
The CPA accounts well for the weak force-constant disorder case but fails for
strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
Towards a first principles description of phonons in NiPt disordered alloys: the role of relaxation
Using a combination of density-functional perturbation theory and the
itinerant coherent potential approximation, we study the effects of atomic
relaxation on the inelastic incoherent neutron scattering cross sections of
disordered NiPt alloys. We build on previous work, where
empirical force constants were adjusted {\it ad hoc} to agree with experiment.
After first relaxing all structural parameters within the local-density
approximation for ordered NiPt compounds, density-functional perturbation
theory is then used to compute phonon spectra, densities of states, and the
force constants. The resulting nearest-neighbor force constants are first
compared to those of other ordered structures of different stoichiometry, and
then used to generate the inelastic scattering cross sections within the
itinerant coherent potential approximation. We find that structural relaxation
substantially affects the computed force constants and resulting inelastic
cross sections, and that the effect is much more pronounced in random alloys
than in ordered alloys.Comment: 8 pages, 3 eps figures, uses revtex
Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k-representation
We present here an augmented space recursive technique in the
k-representation which include diagonal, off-diagonal and the environmental
disorder explicitly : an analytic, translationally invariant, multiple
scattering theory for phonons in random binary alloys.We propose the augmented
space recursion (ASR) as a computationally fast and accurate technique which
will incorporate configuration fluctuations over a large local environment. We
apply the formalism to , Ni_{88}Cr_12} and
alloys which is not a random choice. Numerical results on spectral functions,
coherent structure factors, dispersion curves and disordered induced FWHM's are
presented. Finally the results are compared with the recent itinerant coherent
potential approximation (ICPA) and also with experiments.Comment: 20 pages, LaTeX, 23 figure
The shear modulus of metastable amorphous solids with strong central and bond-bending interactions
We derive expressions for the shear modulus of deeply-quenched, glassy
solids, in terms of a Cauchy-Born free energy expansion around a rigid
(quenched) reference state, following the approach due to Alexander [Alexander,
Phys. Rep. 296, 1998]. Continuum-limit explicit expressions of the shear
modulus are derived starting from the microscopic Hamiltonians of central and
bond-bending interactions. The applicability of the expressions to dense
covalent glasses as well as colloidal glasses with strongly attractive and
adhesive bonds is discussed
Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties
We revisited the problem of the stability of the superconducting state in
RbxWO3 and identified the main causes of the contradictory data previously
published. We have shown that the ordering of the Rb vacancies in the
nonstoichiometric compounds have a major detrimental effect on the
superconducting temperature Tc.The order-disorder transition is first order
only near x = 0.25, where it cannot be quenched effectively and Tc is reduced
below 1K. We found that the high Tc's which were sometimes deduced from
resistivity measurements, and attributed to compounds with .25 < x < .30, are
to be ascribed to interfacial superconductivity which generates spectacular
non-linear effects. We also clarified the effect of acid etching and set more
precisely the low-rubidium-content boundary of the hexagonal phase.This work
makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we
approach this boundary (x = 0.20), if no ordering would take place - as its is
approximately the case in CsxWO3. This behaviour is reminiscent of the
tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism
is responsible for this large increase of Tc despite the considerable
associated reduction of the electron density of state ? By reviewing the other
available data on these bronzes we conclude that the theoretical models which
are able to answer this question are probably those where the instability of
the lattice plays a major role and, particularly, the model which call upon
local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review
Structure and physical properties of paracrystalline atomistic models of amorphous silicon
We have examined the structure and physical properties of paracrystalline molecular dynamics
models of amorphous silicon. Simulations from these models show qualitative agreement with the
results of recent mesoscale fluctuation electron microscopy experiments on amorphous silicon and
germanium. Such agreement is not found in simulations from continuous random network models.
The paracrystalline models consist of topologically crystalline grains which are strongly strained and a disordered matrix between them. We present extensive structural and topological characterization of the medium range order present in the paracrystalline models and examine their physical properties, such as the vibrational density of states, Raman spectra, and electron density of states. We show by direct simulation that the ratio of the transverse acoustic mode to transverse optical mode intensities ITA /ITO in the vibrational density of states and the Raman spectrum can provide a measure of medium range order. In general, we conclude that the current paracrystalline
models are a good qualitative representation of the paracrystalline structures observed in the
experiment and thus provide guidelines toward understanding structure and properties of
medium-range-ordered structures of amorphous semiconductors as well as other amorphous
materials
- …