1,133 research outputs found

    Circuit model for spin-bottleneck resistance in magnetic-tunnel-junction devices

    Full text link
    Spin-bottlenecks are created in magnetic-tunnel-junction devices by spatial inhomogeneity in the relative resistances for up and down spins. We propose a simple electrical circuit model for these devices which incorporates spin-bottleneck effects and can be used to calculate their overall resistance and magnetoresistance. The model permits a simple understanding of the dependence of device magnetoresistance on spin diffusion lengths, tunneling magnetoresistance, and majority and minority spin resistivities in the ferromagnetic electrodes. The circuit model is in a good quantitative agreement with detailed transport calculations.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Theory of Weak Localization in Ferromagnetic (Ga,Mn)As

    Get PDF
    We study quantum interference corrections to the conductivity in (Ga,Mn)As ferromagnetic semiconductors using a model with disordered valence band holes coupled to localized Mn moments through a p-d kinetic-exchange interaction. We find that at Mn concentrations above 1% quantum interference corrections lead to negative magnetoresistance, i.e. to weak localization (WL) rather than weak antilocalization (WAL). Our work highlights key qualitative differences between (Ga,Mn)As and previously studied toy model systems, and pinpoints the mechanism by which exchange splitting in the ferromagnetic state converts valence band WAL into WL. We comment on recent experimental studies and theoretical analyses of low-temperature magnetoresistance in (Ga,Mn)As which have been variously interpreted as implying both WL and WAL and as requiring an impurity-band interpretation of transport in metallic (Ga,Mn)As.Comment: 16 pages, 10 figures; submitted to Phys. Rev.

    Non-vanishing spin Hall currents in disordered spin-orbit coupling systems

    Get PDF
    Spin currents that flow perpendicular to the electric field direction are generic in metals and doped semiconductors with spin-orbit coupling. It has recently been argued that the spin Hall conductivity can be dominated by an intrinsic contribution which follows from Bloch state distortion in the presence of an electric field. Here we report on an numerical demonstration of the robustness of this effect in the presence of disorder scattering for the case of a two-dimensional electron-gas with Rashba spin-orbit interactions (R2DES).Comment: 4 pages, 3 figure

    Boltzmann theory of engineered anisotropic magnetoresistance in (Ga,Mn)As

    Full text link
    We report on a theoretical study of dc transport coefficients in (Ga,Mn)As diluted magnetic semiconductor ferromagnets that accounts for quasiparticle scattering from ionized Mn2+^{2+} acceptors with a local moment S=5/2S=5/2 and from non-magnetic compensating defects. In metallic samples Boltzmann transport theory with Golden rule scattering rates accounts for the principle trends of the measured difference between resistances for magnetizations parallel and perpendicular to the current. We predict that the sign and magnitude of the anisotropic magnetoresistance can be changed by strain engineering or by altering chemical composition.Comment: 4 pages, 2 figure
    • …
    corecore