19 research outputs found

    Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatin

    Get PDF
    Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES) composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/ v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental parameters were optimized. Due to the high surface area of polymer fibers, this type of construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising applications in the development of new drug delivery systems.The research leading to these results has received funding from Fundação para a Ciência e a Tecnologia (FCT) through the projects ENIGMA - PTDC/EQU-EPR/ 121491/2010 and UID/CTM/50025/2013, LAQVREQUIMTE: UID/QUI/50006/2013, UCIBIO-REQUIMTE: UID/Multi/04378/2013 (co-financed by the ERDF under the PT2020 Partnership Agreement [POCI-01-0145-FEDER- 007728]) and by FEDER through the COMPETE 2020 Programme. Marta Martins is grateful for financial support from FCT through the grant BIM/PTDC/EQUEPR/121491/ 2010/ENIGMA. This research has also received funding from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement number REGPOTCT2012-316331-POLARIS and from the project BNovel smart and biomimetic materials for innovative regenerative medicine approaches^ RL1 - ABMR - NORTE-01-0124- FEDER-000016) co-financed by North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Development of a bioactive glass fiber reinforced starch-polycaprolactone composite

    No full text
    ve the mechanical properties of the composite. The aim of this work was to develop and characterize BaG fiber reinforced starch-poly-epsilon-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt %) were produced using single-screw extrusion. They were then cut and compression-molded in layers with BaG fibers to form composite structures with different combinations. Mechanical and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the nonreinforced specimens. However, the mechanical properties of the composites after 2 weeks of hydrolysis were comparable to those of the nonreinforced samples. During the 6 weeks hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained as initial for the 6-week period of hydrolysis. In conclusion, it is possible to enhance initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, mechanical properties of the composites are typical for bone fillers and strength properties need to be further improved for allowing more demanding bone applications
    corecore