304 research outputs found

    Description of non-specific DNA-protein interaction and facilitated diffusion with a dynamical model

    Full text link
    We propose a dynamical model for non-specific DNA-protein interaction, which is based on the 'bead-spring' model previously developed by other groups, and investigate its properties using Brownian Dynamics simulations. We show that the model successfully reproduces some of the observed properties of real systems and predictions of kinetic models. For example, sampling of the DNA sequence by the protein proceeds via a succession of 3d motion in the solvent, 1d sliding along the sequence, short hops between neighboring sites, and intersegmental transfers. Moreover, facilitated diffusion takes place in a certain range of values of the protein effective charge, that is, the combination of 1d sliding and 3d motion leads to faster DNA sampling than pure 3d motion. At last, the number of base pairs visited during a sliding event is comparable to the values deduced from single-molecule experiments. We also point out and discuss some discrepancies between the predictions of this model and some recent experimental results as well as some hypotheses and predictions of kinetic models

    Theoretical investigation of finite size effects at DNA melting

    Get PDF
    We investigated how the finiteness of the length of the sequence affects the phase transition that takes place at DNA melting temperature. For this purpose, we modified the Transfer Integral method to adapt it to the calculation of both extensive (partition function, entropy, specific heat, etc) and non-extensive (order parameter and correlation length) thermodynamic quantities of finite sequences with open boundary conditions, and applied the modified procedure to two different dynamical models. We showed that rounding of the transition clearly takes place when the length of the sequence is decreased. We also performed a finite-size scaling analysis of the two models and showed that the singular part of the free energy can indeed be expressed in terms of an homogeneous function. However, both the correlation length and the average separation between paired bases diverge at the melting transition, so that it is no longer clear to which of these two quantities the length of the system should be compared. Moreover, Josephson's identity is satisfied for none of the investigated models, so that the derivation of the characteristic exponents which appear, for example, in the expression of the specific heat, requires some care

    Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa

    Full text link
    The carnivorous aquatic Waterwheel Plant (Aldrovanda vesiculosa L.) and the closely related terrestrial Venus Flytrap (Dionaea muscipula SOL. EX J. ELLIS) both feature elaborate snap-traps, which shut after reception of an external mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as a miniature, aquatic Dionaea, an assumption which was already established by Charles Darwin. However, videos of snapping traps from both species suggest completely different closure mechanisms. Indeed, the well-described snapping mechanism in Dionaea comprises abrupt curvature inversion of the two trap lobes, while the closing movement in Aldrovanda involves deformation of the trap midrib but not of the lobes, which do not change curvature. In this paper, we present the first detailed mechanical models for these plants, which are based on the theory of thin solid membranes and explain this difference by showing that the fast snapping of Aldrovanda is due to kinematic amplification of the bending deformation of the midrib, while that of Dionaea unambiguously relies on the buckling instability that affects the two lobes.Comment: accepted in Physical Review

    Extracting Multidimensional Phase Space Topology from Periodic Orbits

    Full text link
    We establish a hierarchical ordering of periodic orbits in a strongly coupled multidimensional Hamiltonian system. Phase space structures can be reconstructed quantitatively from the knowledge of periodic orbits alone. We illustrate our findings for the hydrogen atom in crossed electric and magnetic fields.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    High-resolution Fourier-transform XUV photoabsorption spectroscopy of 14N15N

    Get PDF
    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet (XUV) and span 100,000-109,000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schroedinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.Comment: 14 pages, 8 figures, one data archiv

    Anharmonic stacking in supercoiled DNA

    Full text link
    Multistep denaturation in a short circular DNA molecule is analyzed by a mesoscopic Hamiltonian model which accounts for the helicoidal geometry. Computation of melting profiles by the path integral method suggests that stacking anharmonicity stabilizes the double helix against thermal disruption of the hydrogen bonds. Twisting is essential in the model to capture the importance of nonlinear effects on the thermodynamical properties. In a ladder model with zero twist, anharmonic stacking scarcely affects the thermodynamics. Moderately untwisted helices, with respect to the equilibrium conformation, show an energetic advantage against the overtwisted ones. Accordingly moderately untwisted helices better sustain local fluctuational openings and make more unlikely the thermally driven complete strand separation.Comment: In pres

    Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits

    Get PDF
    A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations

    Classical and quantum mechanical plane switching in CO2

    Full text link
    Classical plane switching takes place in systems with a pronounced 1:2 resonance, where the degree of freedom with lowest frequency is doubly-degenerate. Under appropriate conditions, one observes a periodic and abrupt precession of the plane in which the doubly-degenerate motion takes place. In this article, we show that quantum plane switching exists in CO2 : Based on our analytical solutions of the classical Hamilton's equations of motion, we describe the dependence on vibrational angular momentum and energy of the frequency of switches and the plane switching angle. Using these results, we find optimal initial wave packet conditions for CO2 and show, through quantum mechanical propagation, that such a wave packet indeed displays plane switching at energies around 10000 cm-1 above the ground state on time scales of about 100 fs.Comment: accepted for publication in the Journal of Chemical Physic

    Renormalisation group determination of the order of the DNA denaturation transition

    Get PDF
    We report on the nature of the thermal denaturation transition of homogeneous DNA as determined from a renormalisation group analysis of the Peyrard-Bishop-Dauxois model. Our approach is based on an analogy with the phenomenon of critical wetting that goes further than previous qualitative comparisons, and shows that the transition is continuous for the average base-pair separation. However, since the range of universal critical behaviour appears to be very narrow, numerically observed denaturation transitions may look first-order, as it has been reported in the literature.Comment: 6 pages; no figures; to appear in Europhysics Letter
    • …
    corecore