77,917 research outputs found

    Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions

    Get PDF
    We consider the shadow system of the Gierer-Meinhardt system in a smooth bounded domain RN,At=2Aāˆ’A+,x, t>0, ||t=āˆ’||+Ardx, t>0 with the Robin boundary condition +aAA=0, x, where aA>0, the reaction rates (p,q,r,s) satisfy 1<p<()+, q>0, r>0, s0, 1<<+, the diffusion constant is chosen such that 1, and the time relaxation constant is such that 0. We rigorously prove the following results on the stability of one-spike solutions: (i) If r=2 and 1<p<1+4/N or if r=p+1 and 1<p<, then for aA>1 and sufficiently small the interior spike is stable. (ii) For N=1 if r=2 and 1<p3 or if r=p+1 and 1<p<, then for 0<aA<1 the near-boundary spike is stable. (iii) For N=1 if 3<p<5 and r=2, then there exist a0(0,1) and Āµ0>1 such that for a(a0,1) and Āµ=2q/(s+1)(pāˆ’1)(1,Āµ0) the near-boundary spike solution is unstable. This instability is not present for the Neumann boundary condition but only arises for the Robin boundary condition. Furthermore, we show that the corresponding eigenvalue is of order O(1) as 0. Ā©2007 American Institute of Physic

    Enhanced Ferromagnetic Stability in Cu Doped Passivated GaN Nanowires

    Full text link
    Density functional calculations are performed to investigate the room temperature ferromagnetism in GaN:Cu nanowires (NWs). Our results indicate that two Cu dopants are most stable when they are near each other. Compared to bulk GaN:Cu, we find that magnetization and ferromagnetism in Cu doped NWs is strongly enhanced because the band width of the Cu td band is reduced due to the 1D nature of the NW. The surface passivation is shown to be crucial to sustain the ferromagnetism in GaN:Cu NWs. These findings are in good agreement with experimental observations and indicate that ferromagnetism in this type of systems can be tuned by controlling the size or shape of the host materials.Comment: Nano Lett., ASAP Article, 10.1021/nl080261

    Existence and Stability of a Spike in the Central Component for a Consumer Chain Model

    Get PDF
    We study a three-component consumer chain model which is based on Schnakenberg type kinetics. In this model there is one consumer feeding on the producer and a second consumer feeding on the first consumer. This means that the first consumer (central component) plays a hybrid role: it acts both as consumer and producer. The model is an extension of the Schnakenberg model suggested in \cite{gm,schn1} for which there is only one producer and one consumer. It is assumed that both the producer and second consumer diffuse much faster than the central component. We construct single spike solutions on an interval for which the profile of the first consumer is that of a spike. The profiles of the producer and the second consumer only vary on a much larger spatial scale due to faster diffusion of these components. It is shown that there exist two different single spike solutions if the feed rates are small enough: a large-amplitude and a small-amplitude spike. We study the stability properties of these solutions in terms of the system parameters. We use a rigorous analysis for the linearized operator around single spike solutions based on nonlocal eigenvalue problems. The following result is established: If the time-relaxation constants for both producer and second consumer vanish, the large-amplitude spike solution is stable and the small-amplitude spike solution is unstable. We also derive results on the stability of solutions when these two time-relaxation constants are small. We show a new effect: if the time-relaxation constant of the second consumer is very small, the large-amplitude spike solution becomes unstable. To the best of our knowledge this phenomenon has not been observed before for the stability of spike patterns. It seems that this behavior is not possible for two-component reaction-diffusion systems but that at least three components are required. Our main motivation to study this system is mathematical since the novel interaction of a spike in the central component with two other components results in new types of conditions for the existence and stability of a spike. This model is realistic if several assumptions are made: (i) cooperation of consumers is prevalent in the system, (ii) the producer and the second consumer diffuse much faster than the first consumer, and (iii) there is practically an unlimited pool of producer. The first assumption has been proven to be correct in many types of consumer groups or populations, the second assumption occurs if the central component has a much smaller mobility than the other two, the third assumption is realistic if the consumers do not feel the impact of the limited amount of producer due to its large quantity. This chain model plays a role in population biology, where consumer and producer are often called predator and prey. This system can also be used as a model for a sequence of irreversible autocatalytic reactions in a container which is in contact with a well-stirred reservoir

    Effects of topological edge states on the thermoelectric properties of Bi nanoribbons

    Full text link
    Using first-principles calculations combined with Boltzmann transport theory, we investigate the effects of topological edge states on the thermoelectric properties of Bi nanoribbons. It is found that there is a competition between the edge and bulk contributions to the Seebeck coefficients. However, the electronic transport of the system is dominated by the edge states because of its much larger electrical conductivity. As a consequence, a room temperature value exceeding 3.0 could be achieved for both p- and n-type systems when the relaxation time ratio between the edge and the bulk states is tuned to be 1000. Our theoretical study suggests that the utilization of topological edge states might be a promising approach to cross the threshold of the industrial application of thermoelectricity

    Foldy-Wouthuysen transformation for a Dirac-Pauli dyon and the Thomas-Bargmann-Michel-Telegdi equation

    Full text link
    The classical dynamics for a charged point particle with intrinsic spin is governed by a relativistic Hamiltonian for the orbital motion and by the Thomas-Bargmann-Michel-Telegdi equation for the precession of the spin. It is natural to ask whether the classical Hamiltonian (with both the orbital and spin parts) is consistent with that in the relativistic quantum theory for a spin-1/2 charged particle, which is described by the Dirac equation. In the low-energy limit, up to terms of the 7th order in 1/Eg1/E_g (Eg=2mc2E_g=2mc^2 and mm is the particle mass), we investigate the Foldy-Wouthuysen (FW) transformation of the Dirac Hamiltonian in the presence of homogeneous and static electromagnetic fields and show that it is indeed in agreement with the classical Hamiltonian with the gyromagnetic ratio being equal to 2. Through electromagnetic duality, this result can be generalized for a spin-1/2 dyon, which has both electric and magnetic charges and thus possesses both intrinsic electric and magnetic dipole moments. Furthermore, the relativistic quantum theory for a spin-1/2 dyon with arbitrary values of the gyromagnetic and gyroelectric ratios can be described by the Dirac-Pauli equation, which is the Dirac equation with augmentation for the anomalous electric and anomalous magnetic dipole moments. The FW transformation of the Dirac-Pauli Hamiltonian is shown, up to the 7th order again, to be also in accord with the classical Hamiltonian.Comment: 18 page
    • ā€¦
    corecore