6,713 research outputs found

    Radial Velocity Confirmation of a Binary Detected from Pulse Timings

    Get PDF
    A periodic variation in the pulse timings of the pulsating hot subdwarf B star CS 1246 was recently discovered via the O-C diagram and suggests the presence of a binary companion with an orbital period of two weeks. Fits to this phase variation, when interpreted as orbital reflex motion, imply CS 1246 orbits a barycenter 11 light-seconds away with a velocity of 16.6 km/s. Using the Goodman spectrograph on the SOAR telescope, we decided to confirm this hypothesis by obtaining radial velocity measurements of the system over several months. Our spectra reveal a velocity variation with amplitude, period, and phase in accordance with the O-C diagram predictions. This corroboration demonstrates that the rapid pulsations of hot subdwarf B stars can be adequate clocks for the discovery of binary companions via the pulse timing method.Comment: Accepted for publication in ApJ Letters; 5 pages, 2 figures, 3 tables; uses emulateap

    Spin-Dependent Electron Transmission Model for Chiral Molecules in Mesoscopic Devices

    Get PDF
    Various device-based experiments have indicated that electron transfer in certain chiral molecules may be spin-dependent, a phenomenon known as the Chiral Induced Spin Selectivity (CISS) effect. However, due to the complexity of these devices and a lack of theoretical understanding, it is not always clear to what extent the chiral character of the molecules actually contributes to the magnetic-field-dependent signals in these experiments. To address this issue, we report here an electron transmission model that evaluates the role of the CISS effect in two-terminal and multi-terminal linear-regime electron transport experiments. Our model reveals that for the CISS effect, the chirality-dependent spin transmission is accompanied by a spin-flip electron reflection process. Furthermore, we show that more than two terminals are required in order to probe the CISS effect in the linear regime. In addition, we propose two types of multi-terminal nonlocal transport measurements that can distinguish the CISS effect from other magnetic-field-dependent signals. Our model provides an effective tool to review and design CISS-related transport experiments, and to enlighten the mechanism of the CISS effect itself

    Circuit-Model Analysis for Spintronic Devices with Chiral Molecules as Spin Injectors

    Get PDF
    Recent research discovered that charge transfer processes in chiral molecules can be spin selective and named the effect chiral-induced spin selectivity (CISS). Follow-up work studied hybrid spintronic devices with conventional electronic materials and chiral (bio)molecules. However, a theoretical foundation for the CISS effect is still in development and the spintronic signals were not evaluated quantitatively. We present a circuit-model approach that can provide quantitative evaluations. Our analysis assumes the scheme of a recent experiment that used photosystem~I (PSI) as spin injectors, for which we find that the experimentally observed signals are, under any reasonable assumptions on relevant PSI time scales, too high to be fully due to the CISS effect. We also show that the CISS effect can in principle be detected using the same type of solid-state device, and by replacing silver with graphene, the signals due to spin generation can be enlarged four orders of magnitude. Our approach thus provides a generic framework for analyzing this type of experiments and advancing the understanding of the CISS effect

    24 \textmu m length spin relaxation length in boron nitride encapsulated bilayer graphene

    Get PDF
    We have performed spin and charge transport measurements in dual gated high mobility bilayer graphene encapsulated in hexagonal boron nitride. Our results show spin relaxation lengths λs\lambda_s up to 13~\textmu m at room temperature with relaxation times τs\tau_s of 2.5~ns. At 4~K, the diffusion coefficient rises up to 0.52~m2^2/s, a value 5 times higher than the best achieved for graphene spin valves up to date. As a consequence, λs\lambda_s rises up to 24~\textmu m with τs\tau_s as high as 2.9~ns. We characterized 3 different samples and observed that the spin relaxation times increase with the device length. We explain our results using a model that accounts for the spin relaxation induced by the non-encapsulated outer regions.Comment: 5 pages and 4 figure

    Separation of Racemic Mixtures of Amino Acids Using Chiral Eluents

    Get PDF
    A commercially available non-chiral RP-C8 chromatographic column is used with an aqueous chiral mobile phase containing N,N-dimethyl-L-phenylalanine and copper in a ratio 20 : 1 for the enantiomeric resolution of the following amino acids: DL-valine (Val), DL-methionine (Met), DL-leucine (Leu), DL-phenylalanine (Phe) and DL-tyrosine (Tyr). The influence of organic modifier, temperature and flow-rate on the capacity factors and on the selectivity is experimentally determined and the separation behavior is discussed. The capacity factors of some of the amino acids remained constant with changing the composition of the mobile phase, i.e. increasing methanol amount. With increase of the temperature the retention times decreased and the selectivities were slightly reduced. In a study of the effect on retention and selectivity, linear van’t Hoff plots were obtained giving ∆H and ∆S values of the solute transfer from the mobile to the stationary phase. These were found to be within the range obtained for hydrophobic compounds in RP-HPLC systems. Using van Deemter plots high separation efficiency and low apparent axial dispersion coefficients for all amino acids could be determined

    Separation of Racemic Mixtures of Amino Acids Using Chiral Eluents

    Get PDF
    A commercially available non-chiral RP-C8 chromatographic column is used with an aqueous chiral mobile phase containing N,N-dimethyl-L-phenylalanine and copper in a ratio 20 : 1 for the enantiomeric resolution of the following amino acids: DL-valine (Val), DL-methionine (Met), DL-leucine (Leu), DL-phenylalanine (Phe) and DL-tyrosine (Tyr). The influence of organic modifier, temperature and flow-rate on the capacity factors and on the selectivity is experimentally determined and the separation behavior is discussed. The capacity factors of some of the amino acids remained constant with changing the composition of the mobile phase, i.e. increasing methanol amount. With increase of the temperature the retention times decreased and the selectivities were slightly reduced. In a study of the effect on retention and selectivity, linear van’t Hoff plots were obtained giving ∆H and ∆S values of the solute transfer from the mobile to the stationary phase. These were found to be within the range obtained for hydrophobic compounds in RP-HPLC systems. Using van Deemter plots high separation efficiency and low apparent axial dispersion coefficients for all amino acids could be determined

    A model-based approach to stabilizing crutch supported paraplegic standing by artifical hip joint stiffness

    Get PDF
    The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N /spl middot/ m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur

    Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome

    Get PDF
    Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contiguous and complete eukaryotic genome assembly, focusing on the filamentous fungus Verticillium dahliae. Compared with Illumina-based assemblies of the V. dahliae genome, hybrid assemblies that also include PacBio- generated long reads establish superior contiguity. Intriguingly, provided that sufficient sequence depth is reached, assemblies solely based on PacBio reads outperform hybrid assemblies and even result in fully assembled chromosomes. Furthermore, the addition of optical map data allowed us to produce a gapless and complete V. dahliae genome assembly of the expected eight chromosomes from telomere to telomere. Consequently, we can now study genomic regions that were previously not assembled or poorly assembled, including regions that are populated by repetitive sequences, such as transposons, allowing us to fully appreciate an organism’s biological complexity. Our data show that a combination of PacBio-generated long reads and optical mapping can be used to generate complete and gapless assemblies of fungal genomes. IMPORTANCE Studying whole-genome sequences has become an important aspect of biological research. The advent of nextgeneration sequencing (NGS) technologies has nowadays brought genomic science within reach of most research laboratories, including those that study nonmodel organisms. However, most genome sequencing initiatives typically yield (highly) fragmented genome assemblies. Nevertheless, considerable relevant information related to genome structure and evolution is likely hidden in those nonassembled regions. Here, we investigated a diverse set of strategies to obtain gapless genome assemblies, using the genome of a typical ascomycete fungus as the template. Eventually, we were able to show that a combination of PacBiogenerated long reads and optical mapping yields a gapless telomere-to-telomere genome assembly, allowing in-depth genome sanalyses to facilitate functional studies into an organism’s biology
    corecore