406 research outputs found

    Basic Consideration on EAF Dust Treatment Using Hydrometallurgical Processes

    Get PDF
    Electric Arc Furnace (EAF) dust, defined as special industrial waste in Japan, is treated through pyrometallurgical processes in which crude ZnO powder is recovered. An on-site type process, however, is desired to reduce treatment cost and cost of transportation of the dust. A hydrometallurgical process is considered to be suitable for such an on-site treatment. Although many EAF dust treatment processes by hydrometallurgical method have been proposed, most of them have not been commercialized in Japan. A short review of hydrometallurgical processes foe EAF dust was done and a new hydrometallurgical process for EAF dust was proposed in this study. Nitric acid solution is used for the extraction of ZnO from the dust. Some characteristics of the process are as follows: 1. Recovery of Zn from zinc ferrite in EAF dust is the target, while the dissolution of Fe is limited by controlling the pH of the solution. 2. Zn is recovered as metallic Zn by electrowinning from the solution and nitric acid is regenerated in the anode.報文Original Pape

    Direct observation of localization in the minority-spin-band electrons of magnetite below the Verwey temperature

    Full text link
    Two-dimensional spin-uncompensated momentum density distributions, ρs2D(p)\rho_{\rm s}^{2D}({\bf p})s, were reconstructed in magnetite at 12K and 300K from several measured directional magnetic Compton profiles. Mechanical de-twinning was used to overcome severe twinning in the single crystal sample below the Verwey transition. The reconstructed ρs2D(p)\rho_{\rm s}^{2D}({\bf p}) in the first Brillouin zone changes from being negative at 300 K to positive at 12 K. This result provides the first clear evidence that electrons with low momenta in the minority spin bands in magnetite are localized below the Verwey transition temperature.Comment: 13 pages, 4 figures, accepted in Physical Review

    A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al

    Full text link
    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's, their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are however discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff which is broader, and display a tail which is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al, and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl

    Bulk Fermi surface and momentum density in heavily doped La2x_{2-x}Srx_xCuO4_4 using high resolution Compton scattering and positron annihilation spectroscopies

    Get PDF
    We have observed the bulk Fermi surface (FS) in an overdoped (xx=0.3) single crystal of La2x_{2-x}Srx_xCuO4_4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.Comment: 9 pages, 8 figure

    Tricritical Behavior in Charge-Order System

    Full text link
    Tricritical point in charge-order systems and its criticality are studied for a microscopic model by using the mean-field approximation and exchange Monte Carlo method in the classical limit as well as by using the Hartree-Fock approximation for the quantum model. We study the extended Hubbard model and show that the tricritical point emerges as an endpoint of the first-order transition line between the disordered phase and the charge-ordered phase at finite temperatures. Strong divergences of several fluctuations at zero wavenumber are found and analyzed around the tricritical point. Especially, the charge susceptibility chi_c and the susceptibility of the next-nearest-neighbor correlation chi_R are shown to diverge and their critical exponents are derived to be the same as the criticality of the susceptibility of the double occupancy chi_D0. The singularity of conductivity at the tricritical point is clarified. We show that the singularity of the conductivity sigma is governed by that of the carrier density and is given as |sigma-sigma_c|=|g-g_c|^{p_t}Alog{|g-g_{c}|}+B), where g is the effective interaction of the Hubbard model, sigma_c g_c represents the critical conductivity(interaction) and A and B are constants, respectively. Here, in the canonical ensemble, we obtain p_t=2beta_t=1/2 at the tricritical point. We also show that p_t changes into p_{t}'=2beta=1 at the tricritical point in the grand-canonical ensemble when the tricritical point in the canonical ensemble is involved within the phase separation region. The results are compared with available experimental results of organic conductor (DI-DCNQI)2Ag.Comment: 20 pages, 32 figures, to appear in J. Phys. Soc. Jpn. Vol.75(2006)No.

    Finite-Temperature Charge-Ordering Transition and Fluctuation Effects in Quasi-One-Dimensional Electron Systems at Quarter Filling

    Full text link
    Finite-temperature charge-ordering phase transition in quasi one-dimensional (1D) molecular conductors is investigated theoretically, based on a quasi 1D extended Hubbard model at quarter filling with interchain Coulomb repulsion VV_\perp. The interchain term is treated within mean-field approximation whereas the 1D fluctuations in the chains are fully taken into account by the bosonization theory. Three regions are found depending on how the charge ordered state appears at finite temperature when VV_\perp is introduced: (i) weak-coupling region where the system transforms from a metal to a charge ordered insulator with finite transition temperature at a finite critical value of VV_\perp, (ii) an intermediate region where this transition occurs by infinitesimal VV_\perp due to the stability of inherent 1D fluctuation, and (iii) strong-coupling region where the charge ordered state is realized already in the purely 1D case, of which the transition temperature becomes finite with infinitesimal VV_\perp. Analytical formula for the VV_\perp dependence of the transition temperature is derived for each region.Comment: 4 pages, submitted to J. Phys. Soc. Jp

    Molecular epidemiology of livestock rabies viruses isolated in the northeastern Brazilian states of Paraíba and Pernambuco from 2003 - 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Limited or no epidemiological information has been reported for rabies viruses (RABVs) isolated from livestock in the northeastern Brazilian states of Paraíba (PB) and Pernambuco (PE). The aim of this study was to clarify the molecular epidemiology of RABVs circulating in livestock, especially cattle, in these areas between 2003 and 2009.</p> <p>Findings</p> <p>Phylogenetic analysis based on 890 nt of the nucleoprotein (N) gene revealed that the 52 livestock-derived RABV isolates characterized here belonged to a single lineage. These isolates clustered with a vampire bat-related RABV lineage previously identified in other states in Brazil; within PB and PE, this lineage was divided between the previously characterized main lineage and a novel sub-lineage.</p> <p>Conclusions</p> <p>The occurrences of livestock rabies in PB and PE originated from vampire bat RABVs, and the causative RABV lineage has been circulating in this area of northeastern Brazil for at least 7 years. This distribution pattern may correlate to that of a vampire bat population isolated by geographic barriers.</p

    Transport criticality of the first-order Mott transition in a quasi-two-dimensional organic conductor, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    An organic Mott insulator, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, was investigated by resistance measurements under continuously controllable He gas pressure. The first-order Mott transition was demonstrated by observation of clear jump in the resistance variation against pressure. Its critical endpoint at 38 K is featured by vanishing of the resistive jump and critical divergence in pressure derivative of resistance, 1RRP|\frac{1}{R}\frac{\partial R}{\partial P}|, which are consistent with the prediction of the dynamical mean field theory and have phenomenological correspondence with the liquid-gas transition. The present results provide the experimental basis for physics of the Mott transition criticality.Comment: 4 pages, 5 figure

    Experimental magnetic form factors in Co3V2O8: A combined study of ab initio calculations, magnetic Compton scattering and polarized neutron diffraction

    Full text link
    We present a combination of ab initio calculations, magnetic Compton scattering and polarized neutron experiments, which elucidate the density distribution of unpaired electrons in the kagome staircase system Co3V2O8. Ab initio wave functions were used to calculate the spin densities in real and momentum space, which show good agreement with the respective experiments. It has been found that the spin polarized orbitals are equally distributed between the t2g and the eg levels for the spine (s) Co ions, while the eg orbitals of the cross-tie (c) Co ions only represent 30% of the atomic spin density. Furthermore, the results reveal that the magnetic moments of the cross-tie Co ions, which are significantly smaller than those of the spine Co ions in the zero-field ferromagnetic structure, do not saturate by applying an external magnetic field of 2 T along the easy axis a, but that the increasing bulk magnetization originates from induced magnetic moments on the O and V sites. The refined individual magnetic moments are mu(Co_c)=1.54(4) mu_B, mu(Co_s)=2.87(3) mu_B, mu(V)=0.41(4) mu_B, mu(O1)=0.05(5) mu_B, mu(O2)=0.35(5) mu_B, and; mu(O3)=0.36(5) mu_B combining to the same macroscopic magnetization value, which was previously only attributed to the Co ions
    corecore