106 research outputs found

    Carbon Monoxide Induced Erythroid Differentiation of K562 Cells Mimics the Central Macrophage Milieu in Erythroblastic Islands

    Get PDF
    Growing evidence supports the role of erythroblastic islands (EI) as microenvironmental niches within bone marrow (BM), where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb) is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule - CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage

    Incomplete Inhibition of Sphingosine 1-Phosphate Lyase Modulates Immune System Function yet Prevents Early Lethality and Non-Lymphoid Lesions

    Get PDF
    BACKGROUND: S1PL is an aldehyde-lyase that irreversibly cleaves sphingosine 1-phosphate (S1P) in the terminal step of sphingolipid catabolism. Because S1P modulates a wide range of physiological processes, its concentration must be tightly regulated within both intracellular and extracellular environments. METHODOLOGY: In order to better understand the function of S1PL in this regulatory pathway, we assessed the in vivo effects of different levels of S1PL activity using knockout (KO) and humanized mouse models. PRINCIPAL FINDINGS: Our analysis showed that all S1PL-deficient genetic models in this study displayed lymphopenia, with sequestration of mature T cells in the thymus and lymph nodes. In addition to the lymphoid phenotypes, S1PL KO mice (S1PL(-/-)) also developed myeloid cell hyperplasia and significant lesions in the lung, heart, urinary tract, and bone, and had a markedly reduced life span. The humanized knock-in mice harboring one allele (S1PL(H/-)) or two alleles (S1PL(H/H)) of human S1PL expressed less than 10 and 20% of normal S1PL activity, respectively. This partial restoration of S1PL activity was sufficient to fully protect both humanized mouse lines from the lethal non-lymphoid lesions that developed in S1PL(-/-) mice, but failed to restore normal T-cell development and trafficking. Detailed analysis of T-cell compartments indicated that complete absence of S1PL affected both maturation/development and egress of mature T cells from the thymus, whereas low level S1PL activity affected T-cell egress more than differentiation. SIGNIFICANCE: These findings demonstrate that lymphocyte trafficking is particularly sensitive to variations in S1PL activity and suggest that there is a window in which partial inhibition of S1PL could produce therapeutic levels of immunosuppression without causing clinically significant S1P-related lesions in non-lymphoid target organs

    Primary neuroendocrine neoplasm of the esophagus – Report of 14 cases from a single institute and review of the literature

    Full text link

    Realizing mutual occlusion in a wide field-of-view for optical see-through augmented reality displays based on a paired-ellipsoidal-mirror structure

    No full text
    Mutual occlusion is an essential feature for augmented reality (AR) displays for allowing the virtual content to be clearly perceived under an excessively illuminated environment. Although a few works have been done to facilitate the performance of occlusion-capable optical see-through augmented reality (OC-OST-AR) displays, the realization of mutual occlusion in a wide field-of-view (FOV) is still challenging. Divergent from typical hard-edge occlusion and soft edge-occlusion designs, we propose the paired-ellipsoidal-mirror (PEM) structure. The proposed system is allowed to support either hard-edge occlusion or enhanced soft-edge occlusion in a wide FOV by optionally fixing a spatial light modulator (SLM) before the entrance pupil or at an inner focal plane. The numerical aperture (NA) of the system is efficiently increased by the combination of paired ellipsoidal mirror imaging and aperture stop restriction. With proof-of-concept prototypes built, virtual display in a FOV of H160°×V74° and mutual occlusion in a FOV of H122°×V74° are demonstrated with a basic design, respectively. Furthermore, a mixed FOV of H95.3°×V52.9° is demonstrated by an optimized design with vertical parallax reduction and virtual display improvement. © 2021 Optica Publishing Group.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    HYAL1 hyaluronidase in prostate cancer: a tumor promoter and suppressor

    No full text
    Hyaluronidases degrade hyaluronic acid, which promotes metastasis. HYAL1 type hyaluronidase is an independent prognostic indicator of prostate cancer progression and a biomarker for bladder cancer. However, it is controversial whether hyaluronidase (e.g., HYAL1) functions as a tumor promoter or as a suppressor. We stably transfected prostate cancer cells, DU145 and PC-3 ML, with HYAL1-sense (HYAL1-S), HYAL1-antisense (HYAL1-AS), or vector DNA. HYAL1-AS transfectants were not generated for PC-3 ML because it expresses little HYAL1. HYAL1-S transfectants produced or = 80 milliunits hyaluronidase activity (high producers). HYAL1-AS transfectants produced <10% hyaluronidase activity when compared with vector transfectants (18-24 milliunits). Both blocking HYAL1 expression and high HYAL1 production resulted in a 4- to 5-fold decrease in prostate cancer cell proliferation. HYAL1-AS transfectants had a G2-M block due to decreased cyclin B1, cdc25c, and cdc2/p34 expression and cdc2/p34 kinase activity. High HYAL1 producers had a 3-fold increase in apoptotic activity and mitochondrial depolarization when compared with vector transfectants and expressed activated proapoptotic protein WOX1. Blocking HYAL1 expression inhibited tumor growth by 4- to 7-fold, whereas high HYAL1 producing transfectants either did not form tumors (DU145) or grew 3.5-fold slower (PC-3 ML). Whereas vector and moderate HYAL1 producers generated muscle and blood vessel infiltrating tumors, HYAL1-AS tumors were benign and contained smaller capillaries. Specimens of high HYAL1 producers were 99% free of tumor cells. This study shows that, depending on the concentration, HYAL1 functions as a tumor promoter and as a suppressor and provides a basis for anti-hyaluronidase and high-hyaluronidase treatments for cancer
    corecore