66 research outputs found

    Long-term peritoneal dialysis and encapsulating peritoneal sclerosis in children

    Get PDF
    Encapsulating peritoneal sclerosis (EPS) is the most serious complication of long-term peritoneal dialysis (PD), with a mortality rate that exceeds 30%. There have been many reports of the incidence of EPS being strongly correlated to the duration of PD. Patients on PD for longer than 5 years, and especially those receiving this treatment for more than 8 years, should undergo careful and repeated surveillance for risk factors associated with the development of EPS. The development of ultrafiltration failure, a high dialysate/plasma creatinine ratio, as determined by the peritoneal equilibration test, peritoneal calcification, a persistently elevated C-reactive protein level, and severe peritonitis in patients on PD for longer than 8 years are signals that should prompt the clinician to consider terminating PD as a possible means of preventing the development of EPS. The impact of the newer, biocompatible PD solutions on the incidence of EPS has not yet been determined

    Beyond Genetic Factors in Familial Amyloidotic Polyneuropathy: Protein Glycation and the Loss of Fibrinogen's Chaperone Activity

    Get PDF
    Familial amyloidotic polyneuropathy (FAP) is a systemic conformational disease characterized by extracellular amyloid fibril formation from plasma transthyretin (TTR). This is a crippling, fatal disease for which liver transplantation is the only effective therapy. More than 80 TTR point mutations are associated with amyloidotic diseases and the most widely accepted disease model relates TTR tetramer instability with TTR point mutations. However, this model fails to explain two observations. First, native TTR also forms amyloid in systemic senile amyloidosis, a geriatric disease. Second, age at disease onset varies by decades for patients bearing the same mutation and some mutation carrier individuals are asymptomatic throughout their lives. Hence, mutations only accelerate the process and non-genetic factors must play a key role in the molecular mechanisms of disease. One of these factors is protein glycation, previously associated with conformational diseases like Alzheimer's and Parkinson's. The glycation hypothesis in FAP is supported by our previous discovery of methylglyoxal-derived glycation of amyloid fibrils in FAP patients. Here we show that plasma proteins are differentially glycated by methylglyoxal in FAP patients and that fibrinogen is the main glycation target. Moreover, we also found that fibrinogen interacts with TTR in plasma. Fibrinogen has chaperone activity which is compromised upon glycation by methylglyoxal. Hence, we propose that methylglyoxal glycation hampers the chaperone activity of fibrinogen, rendering TTR more prone to aggregation, amyloid formation and ultimately, disease

    Mapping gigahertz vibrations in a plasmonic–phononic crystal

    Get PDF
    We image the gigahertz vibrational modes of a plasmonic–phononic crystal at sub-micron resolution by means of an ultrafast optical technique, using a triangular array of spherical gold nanovoids as a sample. Light is strongly coupled to the plasmonic modes, which interact with the gigahertz phonons by a process akin to surface-enhanced stimulated Brillouin scattering. A marked enhancement in the observed optical reflectivity change at the centre of a void on phononic resonance is likely to be caused by this mechanism. By comparison with numerical simulations of the vibrational field, we identify resonant breathing deformations of the voids and elucidate the corresponding mode shapes. We thus establish scanned optomechanical probing of periodic plasmonic–phononic structures as a new means of investigating their coupled excitations on the nanoscale.<br/
    corecore