111 research outputs found

    Gastric Secretion Mediated by Extravagal Neural Influences

    Get PDF
    In adult cats anesthetized with ether and immobilized with Flaxedil, the effects of electrical stimulation of cerebral loci on gastric secretion were studied. Stimulation of mesencephalic and diencephalic areas increased both the volume and acidity of samples collected hourly. Section of the spinal cord at the level of the second cervical vertebra abolished this secretion; however, subsequent stimulation in the lateral funiculus of the distal end of the severed cord elicited the response. These pilot studies present further evidence for extravagal mediation of gastric secretion

    Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins

    Get PDF
    Lipoprotein lipase (LPL) is crucial in the hydrolysis of triglycerides (TG) in TG-rich lipoproteins in the formation of HDL particles. As both these lipoproteins play an important role in the pathogenesis of atherosclerotic vascular disease, we sought to assess the relationship between post-heparin LPL (PH-LPL) activity and lipids and lipoproteins in a large, well-defined cohort of Dutch males with coronary artery disease (CAD). These subjects were drawn from the REGRESS study, totaled 730 in number and were evaluated against 75 healthy, normolipidemic male controls. Fasting mean PH-LPL activity in the CAD subjects was 108 46 mU/ml, compared to 138 44 mU/ml in controls (P < 0.0001). When these patients were divided into activity quartiles, those in the lowest versus the highest quartile had higher levels of TG (P < 0.001), VLDLc and VLDL-TG (P = 0.001). Conversely, levels of TC, LDL, and HDLc were lower in these patients (P = 0.001, P = 0.02, and P = 0.001, respectively). Also, in this cohort PH-LPL relationships with lipids and lipoproteins were not altered by apoE genotypes. The frequency of common mutations in the LPL gene associated with partial LPL deficiency (N291S and D9N carriers) in the lowest quartile for LPL activity was more than double the frequency in the highest quartile (12.0% vs. 5.0%; P = 0.006). By contrast, the frequency of the S447X LPL variant rose from 11.5% in the lowest to 18.3% (P = 0.006) in the highest quartile. This study, in a large cohort of CAD patients, has shown that PH-LPL activity is decreased (22%; P = 0.001) when compared to controls; that the D9N and N291S, and S447X LPL variants are genetic determinants, respectively, in CAD patients of low and high LPL PH-LPL activities; and that PH-LPL activity is strongly associated with changes in lipids and lipoproteins

    PDE3 Inhibition Reduces Epithelial Mast Cell Numbers in Allergic Airway Inflammation and Attenuates Degranulation of Basophils and Mast Cells

    Get PDF
    Epithelial mast cells are generally present in the airways of patients with allergic asthma that are inadequately controlled. Airway mast cells (MCs) are critically involved in allergic airway inflammation and contribute directly to the main symptoms of allergic patients. Phosphodiesterase 3 (PDE3) tailors signaling of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are critical intracellular second messenger molecules in various signaling pathways. This paper investigates the pathophysiological role and disease-modifying effects of PDE3 in mouse bone marrow-derived MCs (bmMCs), human LAD2- and HMC1 mast cell lines, human blood basophils, and peripheral blood-derived primary human MCs (HuMCs). In a chronic house dust mite (HDM)-driven allergic airway inflammation mouse model, we observed that PDE3 deficiency or PDE3 inhibition (PDE3i) therapy reduced the numbers of epithelial MCs, when compared to control mice. Mouse bone marrow-derived MCs (bmMCs) and the human HMC1 and LAD2 cell lines predominantly expressed PDE3B and PDE4A. BmMCs from Pde3−/− mice showed reduced loss of the degranulation marker CD107b compared with wild-type BmMCs, when stimulated in an immunoglobulin E (IgE)-dependent manner. Following both IgE-mediated and substance P-mediated activation, PDE3i-pretreated basophils, LAD2 cells, and HuMCs, showed less degranulation than diluent controls, as measured by surface CD63 expression. MCs lacking PDE3 or treated with the PDE3i enoximone exhibited a lower calcium flux upon stimulation with ionomycine. In conclusion PDE3 plays a critical role in basophil and mast cell degranulation and therefore its inhibition may be a treatment option in allergic disease

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes – carotid body glomus cells, and ‘pulmonary neuroendocrine cells’ (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive ‘neuroepithelial cells’ (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches

    Updated recommendations for the management of upper respiratory tract infections in South Africa

    Get PDF
    Background. Inappropriate use of antibiotics for non-severe upper respiratory tract infections (URTIs), most of which are viral, significantly adds to the burden of antibiotic resistance. Since the introduction of pneumococcal conjugate vaccines in South Africa in 2009, the relative frequency of the major bacterial pathogens causing acute otitis media (AOM) and acute bacterial rhinosinusitis (ABRS) has changed. Recommendations. Since URTIs are mostly viral in aetiology and bacterial AOM and ABRS frequently resolve spontaneously, these recommendations include diagnostic criteria to assist in separating viral from bacterial causes and hence select those patients who do not require antibiotics. Penicillin remains the drug of choice for tonsillopharyngitis and amoxicillin the drug of choice for both AOM and ABRS. A dose of 90 mg/kg/d is recommended for children, which should be effective for pneumococci with high-level penicillin resistance and will also cover most infections with Haemophilus influenzae. Amoxicillin-clavulanate (in high-dose amoxicillin formulations available for both children and adults) should be considered the initial treatment of choice in patients with recent antibiotic therapy with amoxicillin (previous 30 days) and with resistant H. influenzae infections pending the results of studies of local epidemiology (β-lactamase production ≥15%). The macrolide/azalide class of antibiotics is not recommended routinely for URTIs and is reserved for β-lactam-allergic patients.Conclusion. These recommendations should facilitate rational antibiotic prescribing for URTIs as a component of antibiotic stewardship. They will require updating when new information becomes available, particularly from randomised controlled trials and surveillance studies of local aetiology and antibiotic susceptibility patterns.

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes - carotid body glomus cells, and 'pulmonary neuroendocrine cells' (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive 'neuroepithelial cells' (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches.This work was funded by the Wellcome Trust (Ph.D. Studentship 086804/Z/08/Z to DH; Senior Investigator Award 102889/Z/13/Z to AST), the NIDCR/NIH (R21-DE021509 to SF; R01-DE018477 to EWK), the NIDDK/NIH (1DP2DK098092 to PDSD), the NIH (R01-HL092217 to EWK), the Zebrafish Initiative of the Vanderbilt University Academic Venture Capital Fund (to EWK), the Vanderbilt International Scholar Program (to GU), the HFSP (Long-Term Fellowship to CM) and the Swiss National Science Foundation (Advanced Postdoctoral Fellowship and Professorship to CM). For further information, please visit the publisher's website

    A pathophysiological role of PDE3 in allergic airway inflammation

    Get PDF
    Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation,
    • …
    corecore