2,089 research outputs found
The world wide spread of space technology
Space technological capabilities and developments in US, USSR, Western Europe, Japan, China, and developing nation
Solid state, CCD-buried channel, television camera study and design
An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera
Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition
Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable
Population of bound excited states in intermediate-energy fragmentation reactions
Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a
wide range of reaction mechanisms, ranging from direct reactions to statistical
processes. We examine this transition by measuring the relative population of
excited states in several sd-shell nuclei produced by fragmentation with the
number of removed nucleons ranging from two to sixteen. The two-nucleon removal
is consistent with a non-dissipative process whereas the removal of more than
five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure
Organizational learning in development assistance: a comparative analysis of six tree-planting projects in Kenya
Most community-level development assistance projects fail to achieve their stated objectives. With frustrating regularity, new projects repeat the mistakes that defeated their predecessors. If development assistance organizations are to become effective, they must develop the capacity to learn from their experiences and the experiences of others. There is evidence that community-level forestry projects sponsored by several national and international organisations in Kenya have begun to develop this capacity. I propose to undertake a comparative analysis of six Kenyan efforts (Kenya Wood fuel Development Program, Kenya Renewable Energy Development Project, Rural Afforestation Extension Scheme, CARE Agro-forestry Extension Project, the Greenbelt Movement, and the Kenya Energy Non-Governmental Organization Association), to determine what, these organizations have learned about the design and implementation of sustainable projects and how they learned it
Cross-pollination: inter-organizational learning in Kenyan tree-planting programs
Development assistance organizations working on the same problems in the same region have much to learn from each other's experiences. This preliminary analysis examines inter-organizational learning, as part of a larger study of organizational learning in development assistance. A comparative analysis of tree-planting programs in Kenya found that most formal mechanisms to foster inter-organizational learning achieved only limited success. It is argued that the failures of these mechanisms can be ascribed to their reliance on the participation of program managers, who lack the time, resources, or incentives to participate beyond a superficial level. However, the analysis also reveals that a great deal of information and expertise is shared among these organizations in informal ways, through collegial networks and cooperation among extension staffs. It is recommended that formal mechanisms for inter-organizational learning be adjusted to reflect their limitations, and that informal mechanisms be recognized and encouraged
Anomalous Dynamics of Translocation
We study the dynamics of the passage of a polymer through a membrane pore
(translocation), focusing on the scaling properties with the number of monomers
. The natural coordinate for translocation is the number of monomers on one
side of the hole at a given time. Commonly used models which assume Brownian
dynamics for this variable predict a mean (unforced) passage time that
scales as , even in the presence of an entropic barrier. However, the time
it takes for a free polymer to diffuse a distance of the order of its radius by
Rouse dynamics scales with an exponent larger than 2, and this should provide a
lower bound to the translocation time. To resolve this discrepancy, we perform
numerical simulations with Rouse dynamics for both phantom (in space dimensions
and 2), and self-avoiding (in ) chains. The results indicate that
for large , translocation times scale in the same manner as diffusion times,
but with a larger prefactor that depends on the size of the hole. Such scaling
implies anomalous dynamics for the translocation process. In particular, the
fluctuations in the monomer number at the hole are predicted to be
non-diffusive at short times, while the average pulling velocity of the polymer
in the presence of a chemical potential difference is predicted to depend on
.Comment: 9 pages, 9 figures. Submitted to Physical Review
Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag
We study the electrophoretic separation of polyelectrolytes of varying
lengths by means of end-labeled free-solution electrophoresis (ELFSE). A
coarse-grained molecular dynamics simulation model, using full electrostatic
interactions and a mesoscopic Lattice Boltzmann fluid to account for
hydrodynamic interactions, is used to characterize the drag coefficients of
different label types: linear and branched polymeric labels, as well as
transiently bound micelles.
It is specifically shown that the label's drag coefficient is determined by
its hydrodynamic size, and that the drag per label monomer is largest for
linear labels. However, the addition of side chains to a linear label offers
the possibility to increase the hydrodynamic size, and therefore the label
efficiency, without having to increase the linear length of the label, thereby
simplifying synthesis. The third class of labels investigated, transiently
bound micelles, seems very promising for the usage in ELFSE, as they provide a
significant higher hydrodynamic drag than the other label types.
The results are compared to theoretical predictions, and we investigate how
the efficiency of the ELFSE method can be improved by using smartly designed
drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule
Two-neutron knockout from neutron-deficient Ar, S, and Si
Two-neutron knockout reactions from nuclei in the proximity of the proton
dripline have been studied using intermediate-energy beams of neutron-deficient
Ar, S, and Si. The inclusive cross sections, and also the
partial cross sections for the population of individual bound final states of
the Ar, S and Si knockout residues, have been determined
using the combination of particle and -ray spectroscopy. Similar to the
two-proton knockout mechanism on the neutron-rich side of the nuclear chart,
these two-neutron removal reactions from already neutron-deficient nuclei are
also shown to be consistent with a direct reaction mechanism.Comment: Phys. Rev. C, rapid communication, in pres
- …
