210 research outputs found

    Natural gas pressure let-down utilization

    Get PDF

    Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial.

    Get PDF
    Metal absorbable scaffolds constitute a conceptually attractive alternative to polymeric scaffolds. Promising 6-month outcomes of a second-generation drug-eluting absorbable metal scaffold (DREAMS 2G), consisting of an absorbable magnesium scaffold backbone, have been reported. We assessed the 12-month safety and performance of this novel device. The prospective, international, multi-centre, first-in-man BIOSOLVE-II trial enrolled 123 patients with up to two de novo lesions with a reference diameter between 2.2 and 3.7 mm. All patients were scheduled for angiographic follow-up at 6 months, and-if subjects consented-at 12 months. Dual antiplatelet therapy was recommended for 6 months. Quantitative coronary angiography (QCA) parameters remained stable from 6 to 12 months [paired data of 42 patients: in-segment late lumen loss 0.20 ± 0.21 mm vs. 0.25 ± 0.22 mm, P = 0.117, Δ 0.05 ± 0.21 mm (95% CI: -0.01;0.12); in-scaffold late lumen loss 0.37 ± 0.25 mm vs. 0.39 ± 0.27 mm, P = 0.446, Δ 0.03 ± 0.22 (95% CI: -0.04;0.10), respectively]. Intravascular ultrasound and optical coherence tomography findings corroborated the QCA results. Target lesion failure occurred in four patients (3.4%), consisting of one death of unknown cause, one target-vessel myocardial infarction, and two clinically driven target lesion revascularization. No additional event occurred beyond the 6-month follow-up. During the entire follow-up of 12 months, none of the patients experienced a definite or probable scaffold thrombosis. The novel drug-eluting metal absorbable scaffold DREAMS 2G showed a continuous favourable safety profile up to 12 months and stable angiographic parameters between 6 and 12 months. NCT01960504

    Impact of renal function on clinical outcomes after PCI in ACS and stable CAD patients treated with ticagrelor: a prespecified analysis of the GLOBAL LEADERS randomized clinical trial

    Get PDF
    Background: Impaired renal function (IRF) is associated with increased risks of both ischemic and bleeding events. Ticagrelor has been shown to provide greater absolute reduction in ischemic risk following acute coronary syndrome (ACS) in those with versus without IRF. Methods: A pre-specified sub-analysis of the randomized GLOBAL LEADERS trial (n = 15,991) comparing the experimental strategy of 23-month ticagrelor monotherapy (after 1-month ticagrelor and aspirin dual anti-platelet therapy [DAPT]) with 12-month DAPT followed by 12-month aspirin after percutaneous coronary intervention (PCI) in ACS and stable coronary artery disease (CAD) patients stratified according to IRF (glomerular filtration rate < 60 ml/min/1.73 m2). Results: At 2 years, patients with IRF (n = 2171) had a higher rate of the primary endpoint (all-cause mortality or centrally adjudicated, new Q-wave myocardial infarction [MI](hazard ratio [HR] 1.64, 95% confidence interval [CI] 1.35–1.98, padj = 0.001), all-cause death, site-reported MI, all revascularization and BARC 3 or 5 type bleeding, compared with patients without IRF. Among patients with IRF, there were similar rates of the primary endpoint (HR 0.82, 95% CI 0.61–1.11, p = 0.192, pint = 0.680) and BARC 3 or 5 type bleeding (HR 1.10, 95% CI 0.71–1.71, p = 0.656, pint = 0.506) in the experimental versus the reference group. No significant interactions were seen between IRF and treatment effect for any of the secondary outcome variables. Among ACS patients with IRF, there were no between-group differences in the rates of the primary endpoint or BARC 3 or 5 type bleeding; however, the rates of the patient-oriented composite endpoint (POCE) of all-cause death, any stroke, MI, or revascularization (pint = 0.028) and net adverse clinical events (POCE and BARC 3 or 5 type bleeding) (pint = 0.045), were lower in the experimental versus the reference group. No treatment effects were found in stable CAD patients categorized according to presence of IRF. Conclusions: IRF negatively impacted long-term prognosis after PCI. There were no differential treatment effects found with regard to all-cause death or new Q-wave MI after PCI in patients with IRF treated with ticagrelor monotherapy. Clinical trial regis

    Modifying effect of dual antiplatelet therapy on incidence of stent thrombosis according to implanted drug-eluting stent type

    Get PDF
    Aim To investigate the putative modifying effect of dual antiplatelet therapy (DAPT) use on the incidence of stent thrombosis at 3 years in patients randomized to Endeavor zotarolimus-eluting stent (E-ZES) or Cypher sirolimus-eluting stent (C-SES). Methods and results Of 8709 patients in PROTECT, 4357 were randomized to E-ZES and 4352 to C-SES. Aspirin was to be given indefinitely, and clopidogrel/ticlopidine for ≥3 months or up to 12 months after implantation. Main outcome measures were definite or probable stent thrombosis at 3 years. Multivariable Cox regression analysis was applied, with stent type, DAPT, and their interaction as the main outcome determinants. Dual antiplatelet therapy adherence remained the same in the E-ZES and C-SES groups (79.6% at 1 year, 32.8% at 2 years, and 21.6% at 3 years). We observed a statistically significant (P = 0.0052) heterogeneity in treatment effect of stent type in relation to DAPT. In the absence of DAPT, stent thrombosis was lower with E-ZES vs. C-SES (adjusted hazard ratio 0.38, 95% confidence interval 0.19, 0.75; P = 0.0056). In the presence of DAPT, no difference was found (1.18; 0.79, 1.77; P = 0.43). Conclusion A strong interaction was observed between drug-eluting stent type and DAPT use, most likely prompted by the vascular healing response induced by the implanted DES system. These results suggest that the incidence of stent thrombosis in DES trials should not be evaluated independently of DAPT use, and the optimal duration of DAPT will likely depend upon stent type (Clinicaltrials.gov number NCT00476957

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Comparison of clinical outcomes between Magmaris and Orsiro drug eluting stent at 12 months: Pooled patient level analysis from BIOSOLVE II–III and BIOFLOW II trials

    Get PDF
    Background: The aim of this study was to compare the 12-month clinical outcomes of patients treated with Magmaris or Orsiro. Second generation drug-eluting absorbable metal scaffold Magmaris (Dreams 2G) has proved to be safe and effective in the BIOSOLVE-II study. Similarly, biodegradable polymer sirolimus-eluting stent, Orsiro has shown notable clinical results even in all-comer populations. Methods: Magmaris group patients were taken from the BIOSOLVE-II and BIOSOLVE-III trials, while the patients from Orsiro group were enrolled in BIOFLOW-II trial. The primary outcome was explored using a time-to-event assessment of the unadjusted clinical outcomes for target lesion failure (TLF) at 12 months, followed by a multivariate analysis adjusting for all the significantly different covariates between the groups. Results: The study population consisted of 482 patients (521 lesions), 184 patients (189 lesions) in Magmaris group and 298 patients (332 lesions) in Orsiro group. The mean age was 65.5 ± 10.8 and 62.7 ± 10.4 years in Magmaris and Orsiro groups, respectively (p = 0.005). Magmaris and Orsiro unadjusted TLF rates were 6.0 and 6.4% with no significant difference between the groups (p = 0.869). In the multivariate analysis, there were no meaningful differences between Magmaris and Orsiro groups. Finally, none of the groups presented device thrombosis cases at 12 months. Conclusion: At 12 months there were no significant differences between Magmaris and Orsiro groups neither in the unadjusted assessment nor in the multivariate analysis for target lesion failure. These results should be taken as hypothesis generating and may warrant a head to head comparison on a randomized fashion

    Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk

    Get PDF
    Identification and management of patients at high bleeding risk undergoing percutaneous coronary intervention are of major importance, but a lack of standardization in defining this population limits trial design, data interpretation, and clinical decision-making. The Academic Research Consortium for High Bleeding Risk (ARC-HBR) is a collaboration among leading research organizations, regulatory authorities, and physician-scientists from the United States, Asia, and Europe focusing on percutaneous coronary intervention–related bleeding. Two meetings of the 31-member consortium were held in Washington, DC, in April 2018 and in Paris, France, in October 2018. These meetings were organized by the Cardiovascular European Research Center on behalf of the ARC-HBR group and included representatives of the US Food and Drug Administration and the Japanese Pharmaceuticals and Medical Devices Agency, as well as observers from the pharmaceutical and medical device industries. A consensus definition of patients at high bleeding risk was developed that was based on review of the available evidence. The definition is intended to provide consistency in defining this population for clinical trials and to complement clinical decision-making and regulatory review. The proposed ARC-HBR consensus document represents the first pragmatic approach to a consistent definition of high bleeding risk in clinical trials evaluating the safety and effectiveness of devices and drug regimens for patients undergoing percutaneous coronary intervention

    Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention A Consensus Document From the Academic Research Consortium for High Bleeding Risk

    Get PDF
    Identification and management of patients at high bleeding risk undergoing percutaneous coronary intervention are of major importance, but a lack of standardization in defining this population limits trial design, data interpretation, and clinical decision-making. The Academic Research Consortium for High Bleeding Risk (ARC-HBR) is a collaboration among leading research organizations, regulatory authorities, and physician-scientists from the United States, Asia, and Europe focusing on percutaneous coronary intervention–related bleeding. Two meetings of the 31-member consortium were held in Washington, DC, in April 2018 and in Paris, France, in October 2018. These meetings were organized by the Cardiovascular European Research Center on behalf of the ARC-HBR group and included representatives of the US Food and Drug Administration and the Japanese Pharmaceuticals and Medical Devices Agency, as well as observers from the pharmaceutical and medical device industries. A consensus definition of patients at high bleeding risk was developed that was based on review of the available evidence. The definition is intended to provide consistency in defining this population for clinical trials and to complement clinical decision-making and regulatory review. The proposed ARC-HBR consensus document represents the first pragmatic approach to a consistent definition of high bleeding risk in clinical trials evaluating the safety and effectiveness of devices and drug regimens for patients undergoing percutaneous coronary intervention
    corecore