197 research outputs found
Treatment of primary autoimmune cerebellar ataxia with mycophenolate
Immune-mediated ataxias account for a substantial number of sporadic otherwise idiopathic ataxias. Despite some well-characterised entities such as paraneoplastic cerebellar degeneration where diagnostic markers exist, the majority of immune ataxias remained undiagnosed and untreated. We present here our experience in the treatment of suspected primary autoimmune cerebellar ataxia (PACA) using mycophenolate. All patients reported attend the Sheffield Ataxia Centre on a regular basis and had undergone extensive investigations, including genetic testing using next-generation sequencing, with other causes of ataxia excluded. The diagnosis of PACA was strongly suspected based on investigations, pattern of disease progression, and cerebellar involvement. Patients were treated with mycophenolate and monitored using MR spectroscopy of the cerebellar vermis. Thirty patients with PACA are reported here. Of these, 22 received mycophenolate (group 1). The remaining 8 were not on treatment (group 2-control group). Out of the 22 treated patients, 4 underwent serial MR spectroscopy prior to starting treatment and thus were used as controls making the total number of patients in the control group 12. The mean change of the MRS within the vermis (NAA/Cr area ratio) in the treatment group was + 0.144 ± 0.09 (improved) and in the untreated group − 0.155 ± 0.06 (deteriorated). The difference was significant. We also demonstrated a strong correlation between the spectroscopy and the SARA score. We have demonstrated the effectiveness of mycophenolate in the treatment of PACA. The results suggest that immune-mediated ataxias are potentially treatable, and that there is a need for early diagnosis to prevent permanent neurological deficit. The recently published diagnostic criteria for PACA would hopefully aid the diagnosis and treatment of this entity
Alcohol-related cerebellar degeneration: not all down to toxicity?
Background: Alcohol-related cerebellar degeneration is one of the commonest acquired forms of cerebellar ataxia. The exact pathogenic mechanisms by which alcohol leads to cerebellar damage remain unknown. Possible autoreactive immune mediated mechanisms have not been explored previously. In this study, we aim to investigate the potential role of alcohol-induced immune mediated cerebellar degeneration.
Methods: Patients with ataxia and a history of alcohol misuse were recruited from the Ataxia and Hepatology tertiary clinics at Sheffield Teaching Hospitals NHS Trust. We determined the pattern of cerebellar involvement both on clinical (SARA score) and imaging (MRI volumetry and MR spectroscopy) parameters. In addition, HLA genotyping, serological markers for gluten-related disorders and serological reactivity on rat cerebellar tissue using indirect immunohistochemistry were assessed.
Results: Thirty-eight patients were included in the study all of whom had ataxia. The gait (97 %), stance (89 %) and heel-shin slide (89 %) were the predominant SARA elements affected. MRI volumetric and spectroscopy techniques demonstrated significant structural, volumetric and functional deficits of the cerebellum with particular involvement of the cerebellar vermis. Circulating anti-gliadin antibodies were detected in 34 % patients vs. 12 % in healthy controls. Antibodies to transglutaminase 6 (TG6) were detected in 39 % of patients and 4 % of healthy control subjects. Using immunohistochemistry, Purkinje cell and/or granular layer reactivity was demonstrated in 71 % of patient sera.
Conclusions: Alcohol induced tissue injury to the CNS leading to cerebellar degeneration may also involve immune mediated mechanisms, including sensitisation to gluten
Novel POLG variants associated with late-onset de novo status epilepticus and progressive ataxia
Mitochondrial disease is phenotypically and genetically heterogeneous with an estimated prevalence of 1 in 4,300.1 Mutations in the POLG gene, encoding the catalytic subunit of DNA polymerase gamma, are an important cause of mitochondrial disease. The spectrum of clinical manifestations in POLG-related mitochondrial disease is variable,2 with disease onset ranging from adulthood-onset dominant or recessive progressive external ophthalmoplegia (chronic progressive external ophthalmoplegia), ataxia-neuropathy spectrum, myoclonic epilepsy, myopathy, and sensory ataxia to childhood-onset Alpers syndrome, which is characterized by intractable seizures, psychomotor regression, and hepatic impairment. Epilepsy is a poor prognostic factor in POLG mutations,3 and the onset of epilepsy often clusters in childhood (<5 years) and teenage.4 However, late-onset epileptic encephalopathy is uncommon.4,5 Herein, we describe a patient who died of de novo, late-onset refractory status epilepticus with the identification of 2 novel variants in the POLG gene
Immune-mediated cerebellar ataxias : clinical diagnosis and treatment based on immunological and physiological mechanisms
Since the first description of immune-mediated cerebellar ataxias (IMCAs) by Charcot in 1868, several milestones have been reached in our understanding of this group of neurological disorders. IMCAs have diverse etiologies, such as gluten ataxia, postinfectious cerebellitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus syndrome, anti-GAD ataxia, and primary autoimmune cerebellar ataxia. The cerebellum, a vulnerable autoimmune target of the nervous system, has remarkable capacities (collectively known as the cerebellar reserve, closely linked to plasticity) to compensate and restore function following various pathological insults. Therefore, good prognosis is expected when immune-mediated therapeutic interventions are delivered during early stages when the cerebellar reserve can be preserved. However, some types of IMCAs show poor responses to immunotherapies, even if such therapies are introduced at an early stage. Thus, further research is needed to enhance our understanding of the autoimmune mechanisms underlying IMCAs, as such research could potentially lead to the development of more effective immunotherapies. We underscore the need to pursue the identification of robust biomarkers
Alcohol Induces Sensitization to Gluten in Genetically Susceptible Individuals: A Case Control Study
Background: The mechanisms of cerebellar degeneration attributed to prolonged and excessive alcohol intake remain unclear. Additional or even alternative causes of cerebellar degeneration are often overlooked in suspected cases of alcohol-related ataxia. The objectives of this study were two fold: (1) to investigate the prevalence of gluten-related serological markers in patients with alcohol-related ataxia and; (2) to compare the pattern of brain involvement on magnetic resonance imaging between patients with alcohol and gluten ataxias.
Materials & Methods: Patients diagnosed with alcohol and gluten ataxias were identified from a retrospective review of patients attending a tertiary clinic. HLA genotype and serological markers of gluten-related disorders were recorded. Cerebellar volumetry, MR spectroscopy and voxel-based morphometric analyses were performed on patients and compared with matched control data.
Results: Of 904 registered patients, 104 had alcohol ataxia and 159 had gluten ataxia. 61% of the alcohol ataxia group and 70% of the gluten ataxia group had HLA DQ2/DQ8 genotype compared to 30% in healthy local blood donors. 44% of patients with alcohol ataxia had antigliadin antibodies compared to 12% in the healthy local population and 10% in patients with genetically confirmed ataxias. None of the patients with alcohol ataxia and antigliadin antibodies had celiac disease compared to 40% in patients with gluten ataxia. The pattern of structural brain abnormality in patients with alcohol ataxia who had antigliadin antibodies differed from gluten ataxia and was identical to that of alcohol ataxia.
Conclusions: Alcohol related cerebellar degeneration may, in genetically susceptible individuals, induce sensitization to gluten. Such sensitization may result from a primary cerebellar insult, but a more systemic effect is also possible. The duration and amount of exposure to alcohol may not be the only factors responsible for the cerebellar insult
Autologous haematopoietic stem cell transplantation for refractory stiff-person syndrome: the UK experience
Stiff Person Syndrome (SPS) is a rare immune-mediated disabling neurological disorder characterised by muscle spasms and high GAD antibodies. There are only a few case reports of autologous haematopoietic stem cell transplantation (auto-HSCT) as a treatment for SPS.
Objective
To describe the UK experience of treating refractory SPS with auto-HSCT.
Methods
Between 2015 and 2019, 10 patients with SPS were referred to our institution for consideration of auto-HSCT. Eight patients were deemed suitable for autograft and four were treated. Of the treated patients, three had classical SPS and one had the progressive encephalomyelitis with rigidity and myoclonus variant. All patients were significantly disabled and had failed conventional immunosuppressive therapy. Patients were mobilised with Cyclophosphamide (Cy) 2 g/m2 + G-CSF and conditioned with Cy 200 mg/kg + ATG followed by auto-HSCT.
Results
Despite their significantly reduced performance status, all patients tolerated the procedure with no unexpected toxicities. Following autograft, all patients improved symptomatically and stopped all forms of immunosuppressive therapies. Two patients were able to ambulate independently from being wheelchair dependent. One patient’s walking distance improved from 300 meters to 5 miles and one patient’s ambulation improved from being confined to a wheelchair to be able to walk with a frame. Two patients became seronegative for anti-GAD antibodies and normalised their neurophysiological abnormalities.
Conclusions
Auto-HSCT is an intensive but well tolerated and effective treatment option for patients with SPS refractory to conventional immunotherapy. Further work is warranted to optimise patient selection and establish the efficacy, long-term safety, and cost-effectiveness of this treatment
Diagnostic criteria for primary autoimmune cerebellar ataxia—guidelines from an international task force on immune-mediated cerebellar ataxias
Aside from well-characterized immune-mediated ataxias with a clear trigger and/or association with specific neuronal antibodies, a large number of idiopathic ataxias are suspected to be immune mediated but remain undiagnosed due to lack of diagnostic biomarkers. Primary autoimmune cerebellar ataxia (PACA) is the term used to describe this later group. An International Task Force comprising experts in the field of immune ataxias was commissioned by the Society for Research on the Cerebellum and Ataxias (SRCA) in order to devise diagnostic criteria aiming to improve the diagnosis of PACA. The proposed diagnostic criteria for PACA are based on clinical (mode of onset, pattern of cerebellar involvement, presence of other autoimmune diseases), imaging findings (MRI and if available MR spectroscopy showing preferential, but not exclusive involvement of vermis) and laboratory investigations (CSF pleocytosis and/or CSF-restricted IgG oligoclonal bands) parameters. The aim is to enable clinicians to consider PACA when encountering a patient with progressive ataxia and no other diagnosis given that such consideration might have important therapeutic implications
Consensus Paper: Latent Autoimmune Cerebellar Ataxia (LACA)
Immune-mediated cerebellar ataxias (IMCAs) have diverse etiologies. Patients with IMCAs develop cerebellar symptoms, characterized mainly by gait ataxia, showing an acute or subacute clinical course. We present a novel concept of latent autoimmune cerebellar ataxia (LACA), analogous to latent autoimmune diabetes in adults (LADA). LADA is a slowly progressive form of autoimmune diabetes where patients are often initially diagnosed with type 2 diabetes. The sole biomarker (serum anti-GAD antibody) is not always present or can fluctuate. However, the disease progresses to pancreatic beta-cell failure and insulin dependency within about 5 years. Due to the unclear autoimmune profile, clinicians often struggle to reach an early diagnosis during the period when insulin production is not severely compromised. LACA is also characterized by a slowly progressive course, lack of obvious autoimmune background, and difficulties in reaching a diagnosis in the absence of clear markers for IMCAs. The authors discuss two aspects of LACA: (1) the not manifestly evident autoimmunity and (2) the prodromal stage of IMCA’s characterized by a period of partial neuronal dysfunction where non-specific symptoms may occur. In order to achieve an early intervention and prevent cell death in the cerebellum, identification of the time-window before irreversible neuronal loss is critical. LACA occurs during this time-window when possible preservation of neural plasticity exists. Efforts should be devoted to the early identification of biological, neurophysiological, neuropsychological, morphological (brain morphometry), and multimodal biomarkers allowing early diagnosis and therapeutic intervention and to avoid irreversible neuronal loss
The cortical focus in childhood absence epilepsy; evidence from nonlinear analysis of scalp EEG recordings
OBJECTIVE: To determine the origin and dynamic characteristics of the generalised hyper-synchronous spike and wave (SW) discharges in childhood absence epilepsy (CAE). METHODS: We applied nonlinear methods, the error reduction ratio (ERR) causality test and cross-frequency analysis, with a nonlinear autoregressive exogenous (NARX) model, to electroencephalograms (EEGs) from CAE, selected with stringent electro-clinical criteria (17 cases, 42 absences). We analysed the pre-ictal and ictal strength of association between homologous and heterologous EEG derivations and estimated the direction of synchronisation and corresponding time lags. RESULTS: A frontal/fronto-central onset of the absences is detected in 13 of the 17 cases with the highest ictal strength of association between homologous frontal followed by centro-temporal and fronto-central areas. Delays consistently in excess of 4 ms occur at the very onset between these regions, swiftly followed by the emergence of "isochronous" (0-2 ms) synchronisation but dynamic time lag changes occur during SW discharges. CONCLUSIONS: In absences an initial cortico-cortical spread leads to dynamic lag changes to include periods of isochronous interhemispheric synchronisation, which we hypothesize is mediated by the thalamus. SIGNIFICANCE: Absences from CAE show ictal epileptic network dynamics remarkably similar to those observed in WAG/Rij rats which guided the formulation of the cortical focus theory
- …