9 research outputs found

    Naloxone-responsive acute dystonia and parkinsonism following general anaesthesia

    No full text
    Various movement disorders such as dystonia may acutely develop during or at emergence from general anaesthesia in patients with or without pre-existing Parkinson disease. These movements are triggered by a variety of drugs including propofol, sevoflurane, anti-emetics, antipsychotics and opioids. The postulated mechanism involves an imbalance between dopaminergic and cholinergic neurotransmitters in the basal ganglia. We report an acute, severe and generalised dystonic reaction in an otherwise healthy woman at emergence from general anaesthesia, dramatically reversed by the administration of naloxone, pointing to a potential role of the fentanyl and morphine that the patient had received. Recent literature on the mechanisms of abnormal movements induced by opioids are discussed. The severity of the reaction with usual doses of opioids, in a patient with no prior history of parkinsonism, led to further investigation that demonstrated the possibility of an enhanced susceptibility to opioids, involving a genetically determined abnormal function of glycoproteine-P and catechol-O-methyltransferase

    Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation

    No full text
    Abstract. We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-complete in planar graphs, even if they are trianglefree and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-complete in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus ourselves on approximability in general bipartite graphs and improve earlier approximation results by giving approximation ratios matching inapproximability bounds. We next deal with min weighted edge coloring in bipartite graphs. We show that this problem remains strongly NP-complete, even in the case where the input-graph is both cubic and planar. Furthermore, we provide an inapproximability bound of 7/6 − ε, for any ε> 0 and we give an approximation algorithm with the same ratio. Finally, we show that min weighted node coloring in split graphs can be solved by a polynomial time approximation scheme.
    corecore