182 research outputs found

    Transport and Phonon Damping in 4^{\bf 4}He

    Get PDF
    The dynamic structure function S(k,ω)S(k,\omega) informs about the dispersion and damping of excitations. We have recently (Phys. Rev. B {\bf 97}, 184520 (2018)) compared experimental results for S(k,ω)S(k,\omega) from high-precision neutron scattering experiment and theoretical results using the ``dynamic many-body theory'' (DMBT), showing excellent agreement over the whole experimentally accessible pressure regime. This paper focuses on the specific aspect of the propagation of low-energy phonons. We report calculations of the phonon mean-free path and phonon life time in liquid \he4 as a function of wave length and pressure. Historically, the question was of interest for experiments of quantum evaporation. More recently, there is interest in the potential use of 4^4He as a detector for low-energy dark matter (K. Schulz and Kathryn M. Zurek, Phys. Rev. Lett. {\bf 117}, 121302 (2016)). While the mean free path of long wave length phonons is large, phonons of intermediate energy can have a short mean free path of the order of μ\mum. Comparison of different levels of theory indicate that reliable predictions of the phonon mean free path can be made only by using the most advanced many--body method available, namely, DMBT

    Project of a superfluid He3 detector for direct detection of non-baryonic dark matter : MACHe3

    Full text link
    MACHe3 (MAtrix of Cells of superfluid Helium 3) is a project of non-baryonic Dark Matter search using superfluid He3 as sensitive medium. Simulations on a high granularity matrix show very good rejection against background events. First results on a prototype cell are very encouraging. Neutron detection has been highlighted as well as cosmic muon detection. A phenomenological study has been done with the DarkSUSY code to investigate complementarity of MACHe3 with existing Dark Matter detectors.Comment: 5 pages, 5 figures, to appear in Proceedings of the 4th Marseille International Cosmology Conferenc

    A superfluid He3 detector for direct dark matter search

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter Search. The idea is to use superfluid He3 as a sensitive medium. The existing device, the superfluid He3 cell, will be briefly introduced. Then a description of the MACHe3 project will be presented, in particular the background rejection and the neutralino event rate that may be achieved with such a device.Comment: 6 pages, 3 figures, Proceedings of the 3rd International Workshop on the Identification of Dark Matter (York, UK, 09/18/2000-09/22/2000

    Determination of the mosaic angle distribution of Grafoil platelets using continuous-wave NMR spectra

    Full text link
    We described details of a method to estimate with good accuracy the mosaic angle distributions of microcrystallites (platelets) in exfoliated graphite like Grafoil which is commonly used as an adsorption substrate for helium thin films. The method is based on analysis of resonance field shifts in continuous-wave (CW) NMR spectra of 3^{3}He ferromagnetic monolayers making use of the large nuclear polarization of the adsorbate itself. The mosaic angle distribution of a Grafoil substrate analyzed in this way can be well fitted to a gaussian form with a 27.5±2.527.5\pm2.5 deg spread. This distribution is quite different from the previous estimation based on neutron scattering data which showed an unrealistically large isotropic powder-like component.Comment: 6 pages, 5 figure

    A project of a new detector for direct Dark Matter search: MACHe3

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter (DM) search. A cell of superfluid He3 has been developed and the idea of using a large number of such cells in a high granularity detector is proposed.This contribution presents, after a brief description of the superfluid He3 cell, the simulation of the response of different matrix configurations allowing to define an optimum design as a function of the number of cells and the volume of each cell. The exclusion plot and the predicted interaction cross-section for the neutralino as a photino are presented.Comment: 8 pages, 7 figures, Proceedings of Dark Matter 2000 (Marina Del Rey, Los Angeles, USA, 02/23/2000-02/25/2000

    Ferromagnetism of 3^3He Films in the Low Field Limit

    Full text link
    We provide evidence for a finite temperature ferromagnetic transition in 2-dimensions as H→0H \to 0 in thin films of 3^3He on graphite, a model system for the study of two-dimensional magnetism. We perform pulsed and CW NMR experiments at fields of 0.03 - 0.48 mT on 3^3He at areal densities of 20.5 - 24.2 atoms/nm2^2. At these densities, the second layer of 3^3He has a strongly ferromagnetic tendency. With decreasing temperature, we find a rapid onset of magnetization that becomes independent of the applied field at temperatures in the vicinity of 1 mK. Both the dipolar field and the NMR linewidth grow rapidly as well, which is consistent with a large (order unity) polarization of the 3^3He spins.Comment: 4 figure

    MACHe3, a prototype for non-baryonic dark matter search: KeV event detection and multicell correlation

    Full text link
    Superfluid He3 at ultra-low temperatures (100 microKelvins) is a sensitive medium for the bolometric detection of particles. MACHe3 (MAtrix of Cells of Helium 3) is a project for non-baryonic dark matter search using He3 as a sensitive medium. Simulations made on a high granularity detector show a very good rejection to background signals. A multicell prototype including 3 bolometers has been developed to allow correlations between the cells for background event discrimination. One of the cells contains a low activity Co57 source providing conversion electrons of 7.3 and 13.6 keV to confirm the detection of low energy events. First results on the multicell prototype are presented. A detection threshold of 1 keV has been achieved. The detection of low energy conversion electrons coming from the Co57 source is highlighted as well as the cosmic muon spectrum measurement. The possibility to reject background events by using the correlation among the cells is demonstrated from the simultaneous detection of muons in different cells
    • …
    corecore